Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Calibration and Uncertainty Analysis of a Spacecraft Attitude Determination Test Stand
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
2017 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Experimental testing of attitude determination systems still plays an important role, despite increasing use of simulations. Testing provides a means to numerically quantify system performance, give confidence in the models and methods, and also discover and compensate for unexpected behaviours and interactions with the attitude determination system. The usefulness of the test results is dependent on an understanding of the uncertainties that contribute to the attitude error. With this understanding, the significance of the results can be assessed, and efforts to reduce attitude errors can be directed appropriately. The work of this thesis is to gain a quantitative understanding of the uncertainties that impact the attitude error of low cost spinning spacecraft using COTS camera (as Sun sensor) and MEMS magnetometer. The sensors were calibrated and the uncertainties in these calibrations were quantified, then propagated through the Triad method to uncertainties in the attitude. It was found that most systematic errors were reduced to negligible levels, except those due to timing latencies. Attitude errors achieved in the laboratory with the experimental setup were around 0.14 degrees (3σ) using either the Triad, q-method or Extended Kalman Filter with a gyro for dynamic model replacement. The errors in laboratory were dominated by magnetometer noise. Furthermore, correlated systematic errors had the effect of reducing the attitude error calculated in the laboratory. For an equivalent Sun-mag geometry in orbit, simulation showed that total attitude error would be of the order of 0.77 degrees (3σ). An uncertainty contribution analysis revealed this error was dominated by uncertainties in the inertial magnetic field model. Uncertainties in knowledge of the inertial Sun model, sensor calibration, sensor alignment and sensor noise were shown to be insignificant in comparison.

Place, publisher, year, edition, pages
2017. , 115 p.
Keyword [en]
Attitude determination, test, error, experiment, analysis, sun sensor, magnetometer
National Category
Aerospace Engineering
Identifiers
URN: urn:nbn:se:ltu:diva-62603OAI: oai:DiVA.org:ltu-62603DiVA: diva2:1083724
External cooperation
The University of Wuerzburg
Educational program
Space Engineering, master's level (120 credits)
Supervisors
Examiners
Available from: 2017-03-22 Created: 2017-03-22 Last updated: 2017-07-07Bibliographically approved

Open Access in DiVA

fulltext(10114 kB)226 downloads
File information
File name FULLTEXT01.pdfFile size 10114 kBChecksum SHA-512
8fe5462b5a1bee27bf78965dba99b60e8c779b3065b6f71921a530574493fc35f2ab83710fe2f82fd9a75597ad4fb44062828f076e4bf90aed3eb2fdf492c9fe
Type fulltextMimetype application/pdf

By organisation
Space Technology
Aerospace Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 226 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 182 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf