Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Pooled individual patient data from five countries were used to derive a clinical prediction rule for coronary artery disease in primary care.
Interuniversity Institute for Biostatistics and Statistical Bioinformatics.
Interuniversity Institute for Biostatistics and Statistical Bioinformatics.
Department of General Practice and Family Medicine, Philipps University Marburg, Germany..
Department of Public Health and Primary Care, KU Leuven, Belgium; Department of General Practice, Maastricht University, The Netherlands..
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: Journal of Clinical Epidemiology, ISSN 0895-4356, E-ISSN 1878-5921, Vol. 81, s. 120-128Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

OBJECTIVE: To construct a clinical prediction rule for coronary artery disease (CAD) presenting with chest pain in primary care.

STUDY DESIGN AND SETTING: Meta-Analysis using 3,099 patients from five studies. To identify candidate predictors, we used random forest trees, multiple imputation of missing values, and logistic regression within individual studies. To generate a prediction rule on the pooled data, we applied a regression model that took account of the differing standard data sets collected by the five studies.

RESULTS: The most parsimonious rule included six equally weighted predictors: age ≥55 (males) or ≥65 (females) (+1); attending physician suspected a serious diagnosis (+1); history of CAD (+1); pain brought on by exertion (+1); pain feels like "pressure" (+1); pain reproducible by palpation (-1). CAD was considered absent if the prediction score is <2. The area under the ROC curve was 0.84. We applied this rule to a study setting with a CAD prevalence of 13.2% using a prediction score cutoff of <2 (i.e., -1, 0, or +1). When the score was <2, the probability of CAD was 2.1% (95% CI: 1.1-3.9%); when the score was ≥ 2, it was 43.0% (95% CI: 35.8-50.4%).

CONCLUSIONS: Clinical prediction rules are a key strategy for individualizing care. Large data sets based on electronic health records from diverse sites create opportunities for improving their internal and external validity. Our patient-level meta-analysis from five primary care sites should improve external validity. Our strategy for addressing site-to-site systematic variation in missing data should improve internal validity. Using principles derived from decision theory, we also discuss the problem of setting the cutoff prediction score for taking action.

Ort, förlag, år, upplaga, sidor
Elsevier, 2017. Vol. 81, s. 120-128
Nyckelord [en]
Chest pain, Individual patient data meta-analysis, Medical history taking, Myocardial ischemia, Primary health care, Sensitivity and specificity, Symptom assessment
Nationell ämneskategori
Folkhälsovetenskap, global hälsa, socialmedicin och epidemiologi Kardiologi
Identifikatorer
URN: urn:nbn:se:liu:diva-135309DOI: 10.1016/j.jclinepi.2016.09.011ISI: 000395497500016PubMedID: 27773828OAI: oai:DiVA.org:liu-135309DiVA, id: diva2:1080496
Anmärkning

Funding agencies: Federal Ministry of Education and Research, Germany (BMBF) [FKZ 01GK0920]

Tillgänglig från: 2017-03-10 Skapad: 2017-03-10 Senast uppdaterad: 2018-05-03

Open Access i DiVA

fulltext(418 kB)190 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 418 kBChecksumma SHA-512
5bd1496844dbbfbc567e8b06583f1d4bc5a673607012653fe8fed92bdb6385c9f5c4e34036f46ff10677b5be26a3704b6bdf6df5deedc59abc2d245b98c7525f
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMed

Sök vidare i DiVA

Av författaren/redaktören
Nilsson, Staffan
Av organisationen
Avdelningen för samhällsmedicinMedicinska fakultetenVårdcentralen Vikbolandet
I samma tidskrift
Journal of Clinical Epidemiology
Folkhälsovetenskap, global hälsa, socialmedicin och epidemiologiKardiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 190 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 725 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf