Digitala Vetenskapliga Arkivet

Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Design and Characterization of a Rotating Brushless Outer Pole PM Exciter for a Synchronous Generator
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektricitetslära. (Hydropower)ORCID-id: 0000-0002-3656-1032
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektricitetslära. (Hydropower)
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektricitetslära. (Hydropower)
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektricitetslära. (Hydropower)
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: IEEE transactions on industry applications, ISSN 0093-9994, E-ISSN 1939-9367, Vol. 53, nr 3, s. 2016-2027Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Generally, PM machines are used as PMG pre-exciters in 3-stage brushless excitations systems. This paperpresents the design, characterization and prototyping of a rotatingbrushless PM exciter used in a proposed 2-stage excitation systemfor a synchronous generator. The proposed design reduces thenumber of components compared with conventional systems.A comparison with the state-of-the-art conventional excitationsystems is given. The design of a fast-response, or high initialresponse, brushless exciter requires active rectification on therotating frame, replacing the non-controllable diode bridge. Theobjective was to construct an exciter with the capability of a50 Aoutput field current as well as a high value of the available ceilingvoltage and ceiling current. The final exciter was constructed to befitted into an in-house synchronous generator test setup. A finiteelement model of the exciter was validated with experimentalmeasurements. The exciter prototype is also compared with analternative armature design with non-overlapping single-layerconcentrated windings but with the same main dimensions.The paper includes a general design procedure suitable foroptimization of PM brushless exciters that fulfill the requirementsof their synchronous generators and the grid.

Ort, förlag, år, upplaga, sidor
2017. Vol. 53, nr 3, s. 2016-2027
Nationell ämneskategori
Annan elektroteknik och elektronik
Forskningsämne
Teknisk fysik med inriktning mot elektricitetslära
Identifikatorer
URN: urn:nbn:se:uu:diva-315594DOI: 10.1109/TIA.2017.2669890ISI: 000402062600031OAI: oai:DiVA.org:uu-315594DiVA, id: diva2:1074708
Tillgänglig från: 2017-02-15 Skapad: 2017-02-15 Senast uppdaterad: 2018-09-17Bibliografiskt granskad
Ingår i avhandling
1. A New Paradigm for Large Brushless Hydrogenerators: Advantages Beyond the Static System
Öppna denna publikation i ny flik eller fönster >>A New Paradigm for Large Brushless Hydrogenerators: Advantages Beyond the Static System
2017 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The grid code, FIKS, from the Norwegian transmission system operator (TSO), Statnett, states that synchronous generators > 25MVA, must have a static excitation system. However, an improved brushless excitation system is in operation on some commercial power plants (36MVA, 93.75rpm & 52MVA, 166.67rpm) with grid-assisting performance beyond the conventional static system. The convenional diode bridge is replaced with a remote-controlled thyristor bridge on the shaft. If wireless communication is not allowed, a control signal through brushes should be employed instead. The thesis explores the expected new era for large brushless hydrogenerators. The proposed brushless system have benefits of reduced regular maintenance due to elimination of brushes and reduced unscheduled maintenance due to redundancy; causing a redused cost-of-energy. A six-phase exciter design with a hybrid-mode thyristor bridge interface leads to improved fault-tolerance, better controllability, minimized torque pulsations and reduced armature currents of the exciter. Excitation boosting (EB) capability is included in the brushless system without additional components or circuitry, contrary to the static excitation system. The brushless excitation system is made insensitive to voltage dips in the interconnected grid, causing improved fault ride-through (FRT) capability and power system stabilizer (PSS) actions. 

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2017. s. 93
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1491
Nyckelord
Brushless exciters, Rotating exciters, Permanent Magnet Machines, Synchronous Generator Excitation, Thyristor Rectifiers, Chopper Rectifiers
Nationell ämneskategori
Annan elektroteknik och elektronik
Forskningsämne
Teknisk fysik med inriktning mot elektricitetslära
Identifikatorer
urn:nbn:se:uu:diva-317780 (URN)978-91-554-9859-7 (ISBN)
Disputation
2017-05-10, Häggsalen, Ångströmlaboratoriet, Polacksbacken, Lägerhyddsvägen 2, Uppsala, 13:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2017-04-19 Skapad: 2017-03-17 Senast uppdaterad: 2019-05-13
2. Analysis and control of magnetic forces in synchronous machines
Öppna denna publikation i ny flik eller fönster >>Analysis and control of magnetic forces in synchronous machines
2017 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

In a synchronous machine, radial, tangential, and axial forces are generated. In this thesis, three different technologies to control them are proposed. The first one, involves the utilization of the radial forces that arise between the rotor and the stator. This is achieved by segmenting the rotor field winding into groups of poles and controlling their corresponding magnetization individually. This technology is particularly useful to achieve magnetic balance and to create controllable radial forces. The second technology, involves the control of the rotor field in order to influence the tangential forces that produce torque. This is achieved by inverting the rotor field winding polarity with respect to the stator field. With this technique, breaking and accelerating torques can be created. It is particularly useful to start a synchronous machine. Finally, the application of axial forces with a magnetic thrust bearing is discussed. The main benefits of this technology are higher efficiency and increased reliability.

The work presented in this thesis was carried out within the Division of Electricity in the Department of Engineering Sciences at Uppsala University. It is based on original research supported by analytical calculations, computational simulations and extensive experimental work.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2017. s. 84
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1542
Nyckelord
eccentricity, electromagnetics, electromagnetic forces, excitation, magnetic fields, magnetic forces, magnetic thrust bearing, rotor drive, split rotor, starting, synchronous generators, synchronous machines, synchronous motors, unbalanced magnetic pull
Nationell ämneskategori
Teknik och teknologier
Forskningsämne
Teknisk fysik med inriktning mot elektricitetslära
Identifikatorer
urn:nbn:se:uu:diva-328086 (URN)978-91-513-0036-8 (ISBN)
Disputation
2017-10-06, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2017-09-13 Skapad: 2017-08-16 Senast uppdaterad: 2017-10-17
3. Improving the functionality of synchronous machines using power electronics
Öppna denna publikation i ny flik eller fönster >>Improving the functionality of synchronous machines using power electronics
2017 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

With the advent of modern power electronics there is reason to explore what can be achieved when it is applied to a mature technology like synchronous machines. In this text several concepts will be presented on how it is possible to control forces and how to get better performance out of synchronous machines by using power electronics. Methodologies to create radial forces by controlling the field current in a standard series connected rotor winding as well as when the winding is split in to several segments is presented. By segmenting the rotor a resulting force vector can be created to cancel forces due to unbalanced magnetic pull.

It is also shown that inverting the field current with respect to the stator field enables line start of synchronous machines without using damper bars, frequency converters, or starting motors.

Some first results from the installation and testing of an electromagnetic thrust bearing installed in unit U9 in the hydropower station in Porjus are presented. The benefits of the system is increased reliability and higher efficiency of the thrust bearing system.

An evaluation of a 2-stage brushless excitation system was done, different rotating power electronics topologies were tested in the stationary frame connected to a six-phase permanent magnet brushless exciter. The rotating control and measurement system for the power electronics is presented. Potential benefits of the system is that there is no need for brushes to transfer the field current to the rotor winding, fast response time due to actively controlled electronics, independence of the station bus voltage, and reduced maintenance.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2017
Serie
UURIE / Uppsala universitet, Institutitionen för teknikvetenskaper, ISSN 0349-8352 ; 352-17L
Nyckelord
Power electronics, Synchronous machines, Excitation systems, Magnetic thrust bearing, Starting synchronous machines, Split rotor, Rotating electronics, Magnetic fields, Measurement systems, Unbalanced magnetic pull, Harmonics
Nationell ämneskategori
Elektroteknik och elektronik
Forskningsämne
Teknisk fysik med inriktning mot elektricitetslära
Identifikatorer
urn:nbn:se:uu:diva-333940 (URN)
Presentation
2017-12-18, Häggsalen (Å10132), Ångströmslaboratoriet, Lägerhyddsvägen 1, Uppsala, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2018-01-08 Skapad: 2017-11-20 Senast uppdaterad: 2018-01-08Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltexthttp://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7857104

Sök vidare i DiVA

Av författaren/redaktören
Nøland, Jonas KristiansenEvestedt, FredrikPérez-Loya, J. JoséAbrahamsson, JohanLundin, Urban
Av organisationen
Elektricitetslära
I samma tidskrift
IEEE transactions on industry applications
Annan elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 593 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf