Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Revisiting the stability analysis of the flow over a rotating disk
KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.ORCID-id: 0000-0002-9859-6169
KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
Abstract [en]

Local linear stability analysis applied to the rotating-disk flow is discussed.This flow case is an exact similarity solution to the cylindrical incompressible Navier–Stokes equations also called the von K ́arm ́an flow. The laminar mean velocity profiles are obtained by solving the resulting ordinary differential equations assuming the flow is axisymmetric and time independent. Two stability-analyses methods are used to investigate the local linear stability of this flow: i)the ‘shooting method’; and ii) the ‘Chebyshev polynomial method’. This theoretical investigation focuses on convectively unstable disturbances. Results obtained from the two methods are compared and the methods are shown togive similar results. These theoretical results are also compared with direct numerical simulations and experimental results showing good agreement.

HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-200908OAI: oai:DiVA.org:kth-200908DiVA, id: diva2:1071222
Merknad

This is the second edition of the same paper appearing in Appelquist (Direct numerical simulations of the rotating-disk boundary-layer flow. Licentiate thesis, 2014, Royal Institute of Technology, ISBN: 978-91-7595-202-4). A figure of the Chebyshev polynomials has been taken away, there has been a correction to a typographical error in equation (79), and the result section has been modified. This is mainly due to a mistake that appears in oneof the transformed variables for Mack (1985) which was the basis of an error analysis. Also the introduction is modified appropriately.

QC 20170203

Tilgjengelig fra: 2017-02-03 Laget: 2017-02-03 Sist oppdatert: 2022-06-27bibliografisk kontrollert
Inngår i avhandling
1. The rotating-disk boundary-layer flow studied through numerical simulations
Åpne denne publikasjonen i ny fane eller vindu >>The rotating-disk boundary-layer flow studied through numerical simulations
2017 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis deals with the instabilities of the incompressible boundary-layer flow thatis induced by a disk rotating in otherwise still fluid. The results presented include bothwork in the linear and nonlinear regime and are derived from direct numerical sim-ulations (DNS). Comparisons are made both to theoretical and experimental resultsproviding new insights into the transition route to turbulence. The simulation codeNek5000 has been chosen for the DNS using a spectral-element method (SEM) witha high-order discretization, and the results were obtained through large-scale paral-lel simulations. The known similarity solution of the Navier–Stokes equations for therotating-disk flow, also called the von K ́arm ́an rotating-disk flow, is reproduced by theDNS. With the addition of modelled small simulated roughnesses on the disk surface,convective instabilities appear and data from the linear region in the DNS are anal-ysed and compared with experimental and theoretical data, all corresponding verywell. A theoretical analysis is also presented using a local linear-stability approach,where two stability solvers have been developed based on earlier work. Furthermore,the impulse response of the rotating-disk boundary layer is investigated using DNS.The local response is known to be absolutely unstable and the global response, onthe contrary, is stable if the edge of the disk is assumed to be at radius infinity. Herecomparisons with a finite domain using various boundary conditions give a globalbehaviour that can be both linearly stable and unstable, however always nonlinearlyunstable. The global frequency of the flow is found to be determined by the Rey-nolds number at the confinement of the domain, either by the edge (linear case) or bythe turbulence appearance (nonlinear case). Moreover, secondary instabilities on topof the convective instabilities induced by roughness elements were investigated andfound to be globally unstable. This behaviour agrees well with the experimental flowand acts at a smaller radial distance than the primary global instability. The sharpline corresponding to transition to turbulence seen in experiments of the rotating diskcan thus be explained by the secondary global instability. Finally, turbulence datawere compared with experiments and investigated thoroughly.

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2017. s. 47
Serie
TRITA-MEK, ISSN 0348-467X ; 2017:01
Emneord
laminar-turbulent transition, convective instability, absolute instability, crossflow instability, direct numerical simulations
HSV kategori
Forskningsprogram
Fysik
Identifikatorer
urn:nbn:se:kth:diva-200827 (URN)978-91-7729-269-2 (ISBN)
Disputas
2017-02-24, F3, Lindstedtsvägen 26, Stockholm, 10:15 (engelsk)
Opponent
Veileder
Merknad

QC 20170203

Tilgjengelig fra: 2017-02-03 Laget: 2017-02-03 Sist oppdatert: 2022-06-27bibliografisk kontrollert

Open Access i DiVA

fulltext(469 kB)217 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 469 kBChecksum SHA-512
bc3784f8bf99faa8797986d110974243f8164ced0a69c58dfc5a330897f9d286c5420fac4b69379db308f1bc152590e657b161b088650ef2c03b86aed3c96cbe
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Appelquist, EllinorImayama, Shintaro
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 217 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 1554 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf