Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Optimized synthesis of novel prenyl ferulate performed by feruloyl esterases from Myceliophthora thermophila in microemulsions
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.ORCID-id: 0000-0002-7754-9398
DuPont Industrial Biosciences.
Taros Chemicals GmbH & Co.
Department of Chemical Sciences, University of Naples "Federico II".
Vise andre og tillknytning
2017 (engelsk)Inngår i: Applied Microbiology and Biotechnology, ISSN 0175-7598, E-ISSN 1432-0614, Vol. 101, nr 8, s. 3213-3226Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Five feruloyl esterases (FAEs; EC 3.1.1.73), FaeA1, FaeA2, FaeB1, and FaeB2 from Myceliophthora thermophila C1 and MtFae1a from M. thermophila ATCC 42464, were tested for their ability to catalyze the transesterification of vinyl ferulate (VFA) with prenol in detergentless microemulsions. Reaction conditions were optimized investigating parameters such as the medium composition, the substrate concentration, the enzyme load, the pH, the temperature, and agitation. FaeB2 offered the highest transesterification yield (71.5 ± 0.2%) after 24 h of incubation at 30 °C using 60 mM VFA, 1 M prenol, and 0.02 mg FAE/mL in a mixture comprising of 53.4:43.4:3.2 v/v/v n-hexane:t-butanol:100 mM MOPS-NaOH, pH 6.0. At these conditions, the competitive side hydrolysis of VFA was 4.7-fold minimized. The ability of prenyl ferulate (PFA) and its corresponding ferulic acid (FA) to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals was significant and similar (IC50 423.39 μM for PFA, 329.9 μM for FA). PFA was not cytotoxic at 0.8–100 μM (IC50 220.23 μM) and reduced intracellular reactive oxygen species (ROS) in human skin fibroblasts at concentrations ranging between 4 and 20 μM as determined with the dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay.

sted, utgiver, år, opplag, sider
2017. Vol. 101, nr 8, s. 3213-3226
HSV kategori
Forskningsprogram
Biokemisk processteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-61448DOI: 10.1007/s00253-017-8089-8ISI: 000399167800016PubMedID: 28078397Scopus ID: 2-s2.0-85009279399OAI: oai:DiVA.org:ltu-61448DiVA, id: diva2:1065464
Merknad

Validerad; 2017; Nivå 2; 2017-04-06 (rokbeg)

Tilgjengelig fra: 2017-01-16 Laget: 2017-01-16 Sist oppdatert: 2018-07-10bibliografisk kontrollert
Inngår i avhandling
1. Use of feruloyl esterases for chemoenzymatic synthesis of bioactive compounds
Åpne denne publikasjonen i ny fane eller vindu >>Use of feruloyl esterases for chemoenzymatic synthesis of bioactive compounds
2017 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Feruloyl esterases (FAEs, EC 3.1.1.73) represent a subclass of carboxylic acid esterases that under normal conditions catalyze the hydrolysis of the ester bond between hydroxycinnamic acids (ferulic acid, sinapic acid, caffeic acid, p-coumaric acid) and arabinose residues in plant cell walls. Based on their specificity towards monoferulates and diferulates, substitutions on the phenolic ring and on their amino acid sequence identity, they have been classified into four types (A-D). The use of FAEs as accessory enzymes for the degradation of lignocellulosic biomass and their synergism with other hemicellulases has been studied for application in many industries, such as the food, the biofuel and the paper pulp industry. In the recent years, the use of FAEs as biosynthetic tools has been underlined. Under low water content, these enzymes are able to catalyze the esterification of hydroxycinnamic acids or the transesterification of their esters resulting in compounds with altered lipophilicity, revealing a great potential for tailor-made modification of natural antioxidants for use in cosmetic, cosmeceutical and pharmaceutical industries.

The first part of the thesis is focused on the optimization of reaction conditions for the synthesis of two bioactive esters: prenyl ferulate and L-arabinose ferulate using 5 FAEs (FaeA1, FaeA2, FaeB1, FaeB2 and MtFae1a) from Myceliophthora thermophila in detergentless microemulsions. Reaction conditions were optimized investigating parameters such as the medium composition, the substrate concentration, the enzyme load, the pH, the temperature and the agitation. Regarding the synthesis of prenyl ferulate, FaeB2 offered the highest transesterification yield (71.5±0.2%) after 24 h of incubation at 30oC using 60 mM vinyl ferulate (VFA), 1 M prenol and 0.02 mg FAE/mL in a mixture comprising of 53.4: 43.4: 3.2 v/v/v n-hexane: t-butanol: 100 mM MOPS-NaOH pH 6.0. At these conditions, the competitive hydrolysis was 4-7 fold minimized. Regarding the synthesis of L-arabinose ferulate, FaeA1 offered highest transesterification yield (35.9±2.96%) after 8 h of incubation at 50oC using 80 mM VFA, 55 mM L-arabinose and 0.02 mg FAE/mL in a mixture of 19.8: 74.7: 5.5 v/v/v n-hexane: t-butanol: 100 mM MOPS-NaOH pH 8.0. It was revealed that the type B FAEs from M. thermophila show higher preference to more lipophilic acceptors like prenol, while the type A FaeA1 was more efficient in the synthesis of the more hydrophilic L-arabinose ferulate.

The second part of the thesis is focused on the investigation of the basis of the type A classification of a well-studied FAE from Aspergillus niger (AnFaeA) by comparing its activity towards methyl and arabinose hydroxycinnamate esters. For this purpose, L-arabinose ferulate and caffeate were synthesized enzymatically. kcat/Km ratios revealed that AnFaeA hydrolyzed arabinose ferulate 1600 times and arabinose caffeate 6.5 times more efficiently than methyl esters. This study demonstrated that short alkyl chain hydroxycinnamate esters which are used nowadays for FAE classification can lead to activity misclassification, while L-arabinose esters could potentially substitute synthetic esters in classification.

sted, utgiver, år, opplag, sider
Luleå: Luleå University of Technology, 2017
Serie
Licentiate thesis / Luleå University of Technology, ISSN 1402-1757
HSV kategori
Forskningsprogram
Biokemisk processteknik
Identifikatorer
urn:nbn:se:ltu:diva-62836 (URN)978-91-7583-858-8 (ISBN)978-91-7583-859-5 (ISBN)
Presentation
2017-06-01, C305, Luleå, 10:00
Tilgjengelig fra: 2017-04-04 Laget: 2017-03-31 Sist oppdatert: 2017-11-24bibliografisk kontrollert
2. Development of biocatalytic processes for selective antioxidant production
Åpne denne publikasjonen i ny fane eller vindu >>Development of biocatalytic processes for selective antioxidant production
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Alternativ tittel[sv]
Utveckling av biokatalytiska processer för selektivantioxidant produktion
Abstract [en]

Feruloyl esterases (FAEs, EC 3.1.1.73) represent a subclass of carboxylic acid esterases that under normal conditions catalyze the hydrolysis of the ester bond between hydroxycinnamic acids (ferulic acid, sinapic acid, caffeic acid, p-coumaric acid) and sugar residues in plant cell walls. Based on their specificity towards monoferulates and diferulates, substitutions on the phenolic ring and on their amino acid sequence identity, they have been classified into four types (A-D) while phylogenetic analysis has resulted in classification into thirteen subfamilies (SF1-13). Under low water content, these enzymes are able to catalyze the esterification of hydroxycinnamic acids or the transesterification of their esters (donor) with alcohols or sugars (acceptor) resulting in compounds with modified lipophilicity, having a great potential for use in the tailor-made modification of natural antioxidants for cosmetic, cosmeceutical and pharmaceutical industries. The work described in this thesis focused on the selection,characterization and application of FAEs for the synthesis of bioactive esters with antioxidant activity in non-conventional media. The basis of the current classification systems was investigated in relation with the enzymes’ synthetic and hydrolytic abilities while the developed processes were evaluated for their efficiency and sustainability.

Paper I was dedicated to the screening and evaluation of the synthetic abilities of 28 fungal FAEs using acceptors of different lipophilicity at fixed conditions in detergentless microemulsions. It was revealed that FAEs classified in phylogenetic subfamilies related to acetyl xylan esterases (SF5 and 6) showed increased transesterification rates and selectivity. In general, FAEs showed preference on more hydrophilic alcohol acceptors and in descending order to glycerol > 1-butanol > prenol. Homology modeling and small molecule docking simulations were employed as tools for the identification of a potential relationship between the predicted surface and active site properties of selected FAEs and the transesterification selectivity.

Papers II- IV focused on the characterization of eight promising FAEs and the optimization of reaction conditions for the synthesis of two bioactive esters (prenyl ferulate and L-arabinose ferulate) in detergentless microemulsions. The effect of the medium composition, the donor and acceptor concentration, the enzyme load, the pH, the temperature and the agitation on the transesterification yield and selectivity were investigated. It was observed that the acceptor concentration and enzyme load were crucial parameters for selectivity. Fae125 (Type A, SF5) iiexhibited highest prenyl ferulate yield (81.1%) and selectivity (4.685) converting 98.5% of VFA to products after optimization at 60 mM VFA, 1.5 M prenol, 0.04 mg FAE mL-1, 40oC, 24 h, 53.4:43.4:3.2 v/v/v n-hexane: t-butanol: 100 mM MOPS-NaOH pH 8.0. On the other hand, FaeA1 (Type A, SF5) showed highest L-arabinose ferulate yield (52.2 %) and selectivity (1.120) at 80 mM VFA, 55 mM L-arabinose, 0.02 mg FAE mL-1, 50oC, 8 h, 19.8: 74.7: 5.5 v/v/v n-hexane: t-butanol: 100 mM MOPS-NaOH pH 8.0.

In paper V, the effect of reaction media on the enzyme stability and transesterification yield and selectivity was studied in different solvents for the synthesis of two bioactive esters: prenyl ferulate and L-arabinose ferulate. The best performing enzyme (Fae125) was used in the optimization of reaction conditions in the best solvent (n-hexane) via response surface methodology. Both bioconversions were best described by a two-factor interaction model while optimal conditions were determined as the ones resulting in highest yield and selectivity.Highest prenyl ferulate yield (87.5%) and selectivity (7.616) were observed at 18.56 mM prenol mM-1VFA, 0.04 mg FAE mL-1, 24.5 oC, 24.5 h, 91.8: 8.2 v/v n-hexane: 100 mM sodium acetate pH 4.7. Highest L-arabinose ferulate yield (56.2%) and selectivity (1.284) were observed at 2.96 mM L-arabinose mM-1VFA, 0.02 mg FAE mL-1, 38.9 oC, 12 h, 90.5: 5.0: 4.5 v/v/v n-hexane: dimethyl sulfoxide: 100 mM sodium acetate pH 4.7. The enzyme could be reused for six consecutive reaction cycles maintaining 66.6% of its initial synthetic activity. The developed bioconversions showed exceptional biocatalyst productivities (> 300 g product g-1FAE) and the waste production was within the range of pharmaceutical processes.

Paper VI focused on the investigation of the basis of the type A classification of a well-studied FAE from Aspergillus niger(AnFaeA) by comparing its activity towards methyl and arabinose hydroxycinnamic acid esters. For this purpose, L-arabinose ferulateand caffeate were synthesized enzymatically. kcat/Kmratios revealed that AnFaeA hydrolyzed arabinose ferulate 1600 times and arabinose caffeate 6.5 times more efficiently than methyl esters. This study demonstrated that short alkyl chain hydroxycinnamate esters which are used nowadays for FAE classification can lead to activity misclassification, while L-arabinose esters could potentially substitute synthetic esters in classification describing more adequately the enzyme specificitiesin the natural environment.

sted, utgiver, år, opplag, sider
Luleå: Luleå University of Technology, 2018
Serie
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
HSV kategori
Forskningsprogram
Biokemisk processteknik
Identifikatorer
urn:nbn:se:ltu:diva-68343 (URN)978-91-7790-108-2 (ISBN)978-91-7790-109-9 (ISBN)
Disputas
2018-06-12, C305, Luleå, 10:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2018-04-16 Laget: 2018-04-13 Sist oppdatert: 2018-05-29bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Søk i DiVA

Av forfatter/redaktør
Antonopoulou, IoRova, UlrikaChristakopoulos, Paul
Av organisasjonen
I samme tidsskrift
Applied Microbiology and Biotechnology

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 556 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf