Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Semigeometric Tiling of Event Sequences
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.
Vise andre og tillknytning
2016 (engelsk)Inngår i: Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part I / [ed] Paolo Frasconi, Niels Landwehr, Giuseppe Manco, Jilles Vreeken, Springer, 2016, 329-344 s.Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Event sequences are ubiquitous, e.g., in finance, medicine, and social media. Often the same underlying phenomenon, such as television advertisements during Superbowl, is reflected in independent event sequences, like different Twitter users. It is hence of interest to find combinations of temporal segments and subsets of sequences where an event of interest, like a particular hashtag, has an increased occurrence probability. Such patterns allow exploration of the event sequences in terms of their evolving temporal dynamics, and provide more fine-grained insights to the data than what for example straightforward clustering can reveal. We formulate the task of finding such patterns as a novel matrix tiling problem, and propose two algorithms for solving it. Our first algorithm is a greedy set-cover heuristic, while in the second approach we view the problem as time-series segmentation. We apply the algorithms on real and artificial datasets and obtain promising results. The software related to this paper is available at https://github.com/bwrc/semigeom-r.

sted, utgiver, år, opplag, sider
Springer, 2016. 329-344 s.
Serie
Lecture Notes in Computer Science, ISSN 0302-9743 ; 9851
Emneord [en]
Event sequences, Tiling, Covering, Binary matrices
HSV kategori
Forskningsprogram
data- och systemvetenskap
Identifikatorer
URN: urn:nbn:se:su:diva-135442DOI: 10.1007/978-3-319-46128-1_21ISBN: 978-3-319-46127-4 (tryckt)ISBN: 978-3-319-46128-1 (tryckt)OAI: oai:DiVA.org:su-135442DiVA: diva2:1045226
Konferanse
European Conference, ECML PKDD 2016, Riva del Garda, Italy, September 19-23, 2016
Tilgjengelig fra: 2016-11-08 Laget: 2016-11-08 Sist oppdatert: 2016-12-01bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Karlsson, IsakPapapetrou, Panagiotis
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

Altmetric

Totalt: 16 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf