Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Normal Distributions Transform Traversability Maps: LIDAR-Only Approach for Traversability Mapping in Outdoor Environments
Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland.
Örebro universitet, Institutionen för naturvetenskap och teknik. (Centre for Applied Autonomous Sensor Systems ( AASS ))ORCID-id: 0000-0002-6013-4874
GIM Ltd., Espoo, Finland.
2017 (Engelska)Ingår i: Journal of Field Robotics, ISSN 1556-4959, E-ISSN 1556-4967, Vol. 34, nr 3, s. 600-621Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Safe and reliable autonomous navigation in unstructured environments remains a challenge for field robots. In particular, operating on vegetated terrain is problematic, because simple purely geometric traversability analysis methods typically classify dense foliage as nontraversable. As traversing through vegetated terrain is often possible and even preferable in some cases (e.g., to avoid executing longer paths), more complex multimodal traversability analysis methods are necessary. In this article, we propose a three-dimensional (3D) traversability mapping algorithm for outdoor environments, able to classify sparsely vegetated areas as traversable, without compromising accuracy on other terrain types. The proposed normal distributions transform traversability mapping (NDT-TM) representation exploits 3D LIDAR sensor data to incrementally expand normal distributions transform occupancy (NDT-OM) maps. In addition to geometrical information, we propose to augment the NDT-OM representation with statistical data of the permeability and reflectivity of each cell. Using these additional features, we train a support-vector machine classifier to discriminate between traversable and nondrivable areas of the NDT-TM maps. We evaluate classifier performance on a set of challenging outdoor environments and note improvements over previous purely geometrical traversability analysis approaches.

Ort, förlag, år, upplaga, sidor
John Wiley & Sons, 2017. Vol. 34, nr 3, s. 600-621
Nationell ämneskategori
Datavetenskap (datalogi) Datorseende och robotik (autonoma system)
Forskningsämne
Datavetenskap
Identifikatorer
URN: urn:nbn:se:oru:diva-53368DOI: 10.1002/rob.21657ISI: 000400272700008Scopus ID: 2-s2.0-84971413791OAI: oai:DiVA.org:oru-53368DiVA, id: diva2:1044255
Anmärkning

Funding Agencies:

Finnish Society of Automation  

Finnish Funding Agency for Technology and Innovation (TEKES)  

Forum for Intelligent Machines (FIMA)  

Energy and Life Cycle Cost Efficient Machines (EFFIMA) research program 

Tillgänglig från: 2016-11-02 Skapad: 2016-11-02 Senast uppdaterad: 2018-01-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Sök vidare i DiVA

Av författaren/redaktören
Stoyanov, Todor
Av organisationen
Institutionen för naturvetenskap och teknik
I samma tidskrift
Journal of Field Robotics
Datavetenskap (datalogi)Datorseende och robotik (autonoma system)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 568 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf