Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Historical Manuscript Production Date Estimation using Deep Convolutional Neural Networks
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
2016 (English)Conference paper, Published paper (Refereed)
Abstract [en]

Deep learning has thus far not been used for dating of pre-modern handwritten documents. In this paper, we propose ways of using deep convolutional neural networks (CNNs) to estimate production dates for such manuscripts. In our approach, a CNN can either be used directly for estimating the production date or as a feature learning framework for other regression techniques. We explore the feature learning approach using Gaussian Processes regression and Support Vector Regression.The evaluation is performed on a unique large dataset of over 10000 medieval charters from the Swedish collection Svenskt Diplomatariums huvudkartotek (SDHK). We show that deep learning is applicable to the task of dating documents and that the performance is on average comparable to that of a human expert.

Place, publisher, year, edition, pages
IEEE, 2016. p. 205-210
Series
International Conference on Handwriting Recognition, ISSN 2167-6445
Keywords [en]
Document analysis, Manuscripts, Document dating, Digital Humanities
National Category
Computer Vision and Robotics (Autonomous Systems)
Research subject
Computerized Image Processing
Identifiers
URN: urn:nbn:se:uu:diva-306685DOI: 10.1109/ICFHR.2016.114ISI: 000400052400039ISBN: 978-1-5090-0981-7 (print)OAI: oai:DiVA.org:uu-306685DiVA, id: diva2:1044057
Conference
International Conference on Frontiers in Handwriting Recognition (ICFHR), October 23-26, 2016, Shenzhen, China.
Projects
q2bq2b_vr2012
Funder
Swedish Research Council, 2012-5743Riksbankens Jubileumsfond, NHS14-2068:1Available from: 2016-11-01 Created: 2016-11-01 Last updated: 2019-04-08
In thesis
1. Interpreting the Script: Image Analysis and Machine Learning for Quantitative Studies of Pre-modern Manuscripts
Open this publication in new window or tab >>Interpreting the Script: Image Analysis and Machine Learning for Quantitative Studies of Pre-modern Manuscripts
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The humanities have for a long time been a collection of fields that have not gained from the advancements in computational power, as predicted by Moore´s law.  Fields like medicine, biology, physics, chemistry, geology and economics have all developed quantitative tools that take advantage of the exponential increase of processing power over time.  Recent advances in computerized pattern recognition, in combination with a rapid digitization of historical document collections around the world, is about to change this.

The first part of this dissertation focuses on constructing a full system for finding handwritten words in historical manuscripts. A novel segmentation algorithm is presented, capable of finding and separating text lines in pre-modern manuscripts.  Text recognition is performed by translating the image data of the text lines into sequences of numbers, called features. Commonly used features are analysed and evaluated on manuscript sources from the Uppsala University library Carolina Rediviva and the US Library of Congress.  Decoding the text in the vast number of photographed manuscripts from our libraries makes computational linguistics and social network analysis directly applicable to historical sources. Hence, text recognition is considered a key technology for the future of computerized research methods in the humanities.

The second part of this thesis addresses digital palaeography, using a computers superior capacity for endlessly performing measurements on ink stroke shapes. Objective criteria of character shapes only partly catches what a palaeographer use for assessing similarity. The palaeographer often gets a feel for the scribe's style.  This is, however, hard to quantify.  A method for identifying the scribal hands of a pre-modern copy of the revelations of saint Bridget of Sweden, using semi-supervised learning, is presented.  Methods for production year estimation are presented and evaluated on a collection with close to 11000 medieval charters.  The production dates are estimated using a Gaussian process, where the uncertainty is inferred together with the most likely production year.

In summary, this dissertation presents several novel methods related to image analysis and machine learning. In combination with recent advances of the field, they enable efficient computational analysis of very large collections of historical documents.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2017. p. 95
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1475
Keywords
document analysis, machine learning, image analysis, digital humanities, document dating, writer identification, text recognition
National Category
Computer Vision and Robotics (Autonomous Systems)
Research subject
Computer Science
Identifiers
urn:nbn:se:uu:diva-314211 (URN)978-91-554-9814-6 (ISBN)
Public defence
2017-03-24, Tidskriftläsesalen, Carolina rediviva, Dag Hammarskjölds väg 1, Uppsala, 10:15 (English)
Opponent
Supervisors
Projects
q2b
Available from: 2017-03-02 Created: 2017-01-31 Last updated: 2018-01-13
2. Learning based Word Search and Visualisation for Historical Manuscript Images
Open this publication in new window or tab >>Learning based Word Search and Visualisation for Historical Manuscript Images
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Today, work with historical manuscripts is nearly exclusively done manually, by researchers in the humanities as well as laypeople mapping out their personal genealogy. This is a highly time consuming endeavour as it is not uncommon to spend months with the same volume of a few hundred pages. The last few decades have seen an ongoing effort to digitise manuscripts, both preservation purposes and to increase accessibility. This has the added effect of enabling the use methods and algorithms from Image Analysis and Machine Learning that have great potential in both making existing work more efficient and creating new methodologies for manuscript-based research.

The first part of this thesis focuses on Word Spotting, the task of searching for a given text query in a manuscript collection. This can be broken down into two tasks, detecting where the words are located on the page, and then ranking the words according to their similarity to a search query. We propose Deep Learning models to do both, separately and then simultaneously, and successfully search through a large manuscript collection consisting of over a hundred thousand pages.

A limiting factor in applying learning-based methods to historical manuscript images is the cost, and therefore, lack of annotated data needed to train machine learning models. We propose several ways to mitigate this problem, including generating synthetic data, augmenting existing data to get better value from it, and learning from pre-existing, partially annotated data that was previously unusable.

In the second part, a method for visualising manuscript collections called the Image-based Word Cloud is proposed. Much like it text-based counterpart, it arranges the most representative words in a collection into a cloud, where the size of the words are proportional to their frequency of occurrence. This grants a user a single image overview of a manuscript collection, regardless of its size. We further propose a way to estimate a manuscripts production date. This can grant historians context that is crucial for correctly interpreting the contents of a manuscript.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2019. p. 82
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1798
Keywords
Word Spotting, Convolutional Neural Networks, Deep Learning, Region Proposals, Historical Manuscripts, Computer Vision, Image Analysis, Visualisation, Document Analysis
National Category
Computer Vision and Robotics (Autonomous Systems)
Research subject
Computerized Image Processing
Identifiers
urn:nbn:se:uu:diva-381308 (URN)978-91-513-0633-9 (ISBN)
Public defence
2019-06-04, TLS (Tidskriftläsesalen), Carolina Rediviva, Dag Hammarskjölds väg 1, Uppsala, 10:15 (English)
Opponent
Supervisors
Funder
Swedish Research Council, 2012-5743Riksbankens Jubileumsfond, NHS14-2068:1
Available from: 2019-05-13 Created: 2019-04-08 Last updated: 2019-06-18

Open Access in DiVA

fulltext(1349 kB)152 downloads
File information
File name FULLTEXT01.pdfFile size 1349 kBChecksum SHA-512
512a16e61e1e51c71d79fcd6b84a1c4e516834fbb27f81cbb9cfcbd591d9bf74fa7f7094d41ee0ea9a8617d0cb6aa83ca4ffa27064736e5808a23d4999279644
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Wahlberg, FredrikWilkinson, TomasBrun, Anders
By organisation
Division of Visual Information and InteractionComputerized Image Analysis and Human-Computer Interaction
Computer Vision and Robotics (Autonomous Systems)

Search outside of DiVA

GoogleGoogle Scholar
Total: 152 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 590 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf