Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Color Fusion and Super-Resolution for Time-of-Flight Cameras
Linköpings universitet, Institutionen för systemteknik, Datorseende.
2017 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

The recent emergence of time-of-flight cameras has opened up new possibilities in the world of computer vision. These compact sensors, capable of recording the depth of a scene in real-time, are very advantageous in many applications, such as scene or object reconstruction. This thesis first addresses the problem of fusing depth data with color images. A complete process to combine a time-of-flight camera with a color camera is described and its accuracy is evaluated. The results show that a satisfying precision is reached and that the step of calibration is very important.

The second part of the work consists of applying super-resolution techniques to the time-of-flight camera in order to improve its low resolution. Different types of super-resolution algorithms exist but this thesis focuses on the combination of multiple shifted depth maps. The proposed framework is made of two steps: registration and reconstruction. Different methods for each step are tested and compared according to the improvements reached in term of level of details, sharpness and noise reduction. The results obtained show that Lucas-Kanade performs the best for the registration and that a non-uniform interpolation gives the best results in term of reconstruction. Finally, a few suggestions are made about future work and extensions for our solutions.

Ort, förlag, år, upplaga, sidor
2017. , s. 88
Nyckelord [en]
Time-of-flight camera, depth perception, 3D camera, calibration, sensor fusion, image processing, super-resolution, motion estimation
Nationell ämneskategori
Datorseende och robotik (autonoma system)
Identifikatorer
URN: urn:nbn:se:liu:diva-141956ISRN: LiTH-ISY-EX--17/5089--SEOAI: oai:DiVA.org:liu-141956DiVA, id: diva2:1149382
Externt samarbete
SICK IVP
Presentation
2017-10-12, Algorithmen, 10:15 (Engelska)
Handledare
Examinatorer
Tillgänglig från: 2017-10-16 Skapad: 2017-10-15 Senast uppdaterad: 2018-01-13Bibliografiskt granskad

Open Access i DiVA

fulltext(11930 kB)217 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 11930 kBChecksumma SHA-512
cfba454647120135be13ca82500b92013dfc8c9b15c9fcab492f1b59beb5f24bc7ab03fae7a0294206e6ad689f1decc7ccec3ad9c20878aba6ef3f157fbac593
Typ fulltextMimetyp application/pdf

Sök vidare i DiVA

Av författaren/redaktören
Zins, Matthieu
Av organisationen
Datorseende
Datorseende och robotik (autonoma system)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 217 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 1878 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf