Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Suspensions of finite-size rigid spheres in different flow cases
KTH, Skolan för teknikvetenskap (SCI), Mekanik, Fysiokemisk strömningsmekanik.ORCID-id: 0000-0003-0418-7864
2015 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Dispersed multiphase flows occur in many biological, engineering and geophysical applications such asfluidized beds, soot particle dispersion and pyroclastic flows. Understanding the behavior of suspensionsis a very difficult task. Indeed particles may differ in size, shape, density and stiffness, theirconcentration varies from one case to another, and the carrier fluid may be quiescent or turbulent.When turbulent flows are considered, the problem is further complicated due to the interactionsbetween particles and eddies of different size, ranging from the smallest dissipative scales up to thelargest integral scales. Most of the investigations on the topic have dealt with heavy small particles (typicallysmaller than the dissipative scale) and in the dilute regime. Less is known regarding the behavior ofsuspensions of finite-size particles (particles that are larger than the smallest lengthscales of the fluid phase).

In the present work, we numerically study the behavior of suspensions of finite-size rigid spheres indifferent flows. In particular, we perform Direct Numerical Simulations using an ImmersedBoundary Method to account for the solid phase. Firstly is investigated the sedimentation of particles slightly larger than theTaylor microscale in sustained homogeneous isotropic turbulence and quiescent fluid. The results show thatthe mean settling velocity is lower in an already turbulent flow than in a quiescent fluid. By estimatingthe mean drag acting on the particles, we find that non stationary effects explain the increased reductionin mean settling velocity in turbulent environments.

We also consider a turbulent channel flow seeded with finite-size spheres. We change the solid volumefraction and solid to fluid density ratio in an idealized scenario where gravity is neglected. The aim isto independently understand the effects of these parameters on both fluid and solid phases statistics.It is found that the statistics are substantially altered by changes in volume fraction, while the main effectof increasing the density ratio is a shear-induced migration toward the centerline. However, at very high density ratios (~100) the two phases decouple and the particles behave as a dense gas.

Finally we study the rheology of confined dense suspensions of spheres in simple shear flow. We focus onthe weakly inertial regime and show that the suspension effective viscosity varies non-monotonically with increasingconfinement. The minima of the effective viscosity occur when the channel width is approximately an integernumber of particle diameters. At these confinements, the particles self-organize into two-dimensional frozen layers thatslide onto each other.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2015. , s. xii, 30
Serie
TRITA-MEK, ISSN 0348-467X ; 2015:12
Nationell ämneskategori
Strömningsmekanik och akustik
Forskningsämne
Teknisk mekanik
Identifikatorer
URN: urn:nbn:se:kth:diva-177900OAI: oai:DiVA.org:kth-177900DiVA, id: diva2:874914
Presentation
2015-12-17, D3, Lindstedtsvägen 5, KTH, Stockholm, 14:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
EU, Europeiska forskningsrådet
Anmärkning

QC 20151130

Tillgänglig från: 2015-11-30 Skapad: 2015-11-30 Senast uppdaterad: 2015-11-30Bibliografiskt granskad
Delarbeten
1. Sedimentation of finite-size spheres in quiescent and turbulent environments
Öppna denna publikation i ny flik eller fönster >>Sedimentation of finite-size spheres in quiescent and turbulent environments
2016 (Engelska)Ingår i: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 788, s. 640-669Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Sedimentation of a dispersed solid phase is widely encountered in applications and environmental flows, yetlittle is known about the behavior of finite-size particles inhomogeneous isotropic turbulence.

To fill this gap, we perform Direct Numerical Simulations of sedimentation in quiescent and turbulent environments using anImmersed Boundary Method to accountfor the dispersed rigid spherical particles. The solid volume fractions considered are 0.5-1%,while the solid to fluid density ratio 1.02.The particle radius is chosen to be approximately 6 Komlogorov lengthscales.

Sedimentation of a dispersed solid phase is widely encountered in applications and environmental flows, yet little is known about the behaviour of finite-size particles in homogeneous isotropic turbulence. To fill this gap, we perform direct numerical simulations of sedimentation in quiescent and turbulent environments using an immersed boundary method to account for the dispersed rigid spherical particles. The solid volume fractions considered are phi = 0.5-1%, while the solid to fluid density ratio rho(p)/rho(f) = 1.02. The particle radius is chosen to be approximately six Kolmogorov length scales. The results show that the mean settling velocity is lower in an already turbulent flow than in a quiescent fluid. The reductions with respect to a single particle in quiescent fluid are approximately 12 % and 14% for the two volume fractions investigated. The probability density function of the particle velocity is almost Gaussian in a turbulent flow, whereas it displays large positive tails in quiescent fluid. These tails arc associated with the intermittent fast sedimentation of particle pairs in drafting kissing tumbling motions. The particle lateral dispersion is higher in a turbulent flow, whereas the vertical one is, surprisingly, of comparable magnitude as a consequence of the highly intermittent behaviour observed in the quiescent fluid. Using the concept of mean relative velocity we estimate the mean drag coefficient from empirical formulae and show that non-stationary effects, related to vortex shedding, explain the increased reduction in mean settling Velocity in a turbulent environment.

Ort, förlag, år, upplaga, sidor
Cambridge University Press, 2016
Nyckelord
multiphase and particle-laden flows, particle/fluid flow, suspensions
Nationell ämneskategori
Strömningsmekanik och akustik
Identifikatorer
urn:nbn:se:kth:diva-177894 (URN)10.1017/jfm.2015.698 (DOI)000368413600019 ()2-s2.0-84997815913 (Scopus ID)
Forskningsfinansiär
EU, Europeiska forskningsrådet, ERC-2013-CoG-616186
Anmärkning

QC 20160220

Tillgänglig från: 2015-11-30 Skapad: 2015-11-30 Senast uppdaterad: 2017-12-01Bibliografiskt granskad
2. The effect of particle density in turbulent channel flow laden with finite-size particles in semi-dilute conditions
Öppna denna publikation i ny flik eller fönster >>The effect of particle density in turbulent channel flow laden with finite-size particles in semi-dilute conditions
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

We study the effect of varying the mass and volume fraction of a suspension of rigid spheres dispersedin a turbulent channel flow. We performed several Direct Numerical Simulations using an Immersed Boundary Method forfinite-size particles changing the solid to fluid density ratio R, the mass fraction and the volume fraction. We find that varying the density ratio R between 1 and 10 at constant volume fraction does not alter the flow statisticsas much as when varying the volume fraction at constant R and at constant mass fraction.

Interestingly, the increase in overall drag found when varying the volume fraction is considerablyhigher than that obtained for increasing density ratios at same volume fraction. The main effect atdensity ratios R of the order of 10 is a strong shear-induced migration towards the centerline of the channel. When thedensity ratio R is further increased up to 100 the particle dynamics decouple from that of the fluid. The solid phase behaves as a dense gas andthe fluid and solid phase statistics drastically change. In this regime, the collisionrate is high and dominated by the normal relative velocity among particles.

Nationell ämneskategori
Strömningsmekanik och akustik
Identifikatorer
urn:nbn:se:kth:diva-177897 (URN)
Forskningsfinansiär
EU, Europeiska forskningsrådet
Anmärkning

QS 2015

Tillgänglig från: 2015-11-30 Skapad: 2015-11-30 Senast uppdaterad: 2015-11-30Bibliografiskt granskad
3. Rheology of extremely confined non-Brownian suspensions
Öppna denna publikation i ny flik eller fönster >>Rheology of extremely confined non-Brownian suspensions
Visa övriga...
2016 (Engelska)Ingår i: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 116, nr 1, artikel-id 018301Artikel i tidskrift (Övrigt vetenskapligt) Published
Abstract [en]

We study the rheology of confined suspensions of  neutrally buoyant rigid monodisperse spheres in plane-Couetteflow using Direct Numerical Simulations.We find that if the width of the channel is a (small) integer multiple of the spherediameter, the spheres self-organize into two-dimensional layersthat slide on each other and the effective viscosity of the suspension  issignificantly reduced.  Each two-dimensional layer is found to be structurallyliquid-like but its dynamics is frozen in time.

Ort, förlag, år, upplaga, sidor
American Physical Society, 2016
Nyckelord
IMMERSED BOUNDARY METHOD, DENSE SUSPENSIONS, VISCOSITY, DIMENSIONS, SPHERES
Nationell ämneskategori
Strömningsmekanik och akustik
Identifikatorer
urn:nbn:se:kth:diva-177898 (URN)10.1103/PhysRevLett.116.018301 (DOI)000367784300020 ()2-s2.0-84954455170 (Scopus ID)
Forskningsfinansiär
EU, Europeiska forskningsrådet, ERC-2013-CoG-616186Vetenskapsrådet, 2011-542Vetenskapsrådet, 638-2013-9243
Anmärkning

QC 20160205

Tillgänglig från: 2015-11-30 Skapad: 2015-11-30 Senast uppdaterad: 2017-12-01Bibliografiskt granskad

Open Access i DiVA

Thesis(4855 kB)471 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 4855 kBChecksumma SHA-512
f079a24fbea396bb4b631d2412b42c9b4b55e30708e0abdc4a41f120a585c853b767b4fea6b4a880a3efbc0b5359a291acf2e25b91167e7420542a96bb6f90e3
Typ fulltextMimetyp application/pdf

Sök vidare i DiVA

Av författaren/redaktören
Fornari, Walter
Av organisationen
Fysiokemisk strömningsmekanik
Strömningsmekanik och akustik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 471 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 968 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf