High dynamic stiffness nano-structured composites for vibration control: A Study of applications in joint interfaces and machining systems
2015 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]
Vibration control requires high dynamic stiffness in mechanical structures for a reliable performance under extreme conditions. Dynamic stiffness composes the parameters of stiffness (K) and damping (η) that are usually in a trade-off relationship. This thesis study aims to break the trade-off relationship.
After identifying the underlying mechanism of damping in composite materials and joint interfaces, this thesis studies the deposition technique and physical characteristics of nano-structured HDS (high dynamic stiffness) composite thick-layer coatings. The HDS composite were created by enlarging the internal grain boundary surface area through reduced grain size in nano scale (≤ 40 nm). The deposition process utilizes a PECVD (Plasma Enhanced Chemical Vapour Deposition) method combined with the HiPIMS (High Power Impulse Magnetron Sputtering) technology. The HDS composite exhibited significantly higher surface hardness and higher elastic modulus compared to Poly(methyl methacrylate) (PMMA), yet similar damping property. The HDS composites successfully realized vibration control of cutting tools while applied in their clamping interfaces.
Compression preload at essential joint interfaces was found to play a major role in stability of cutting processes and a method was provided for characterizing joint interface properties directly on assembled structures. The detailed analysis of a build-up structure showed that the vibrational mode energy is shifted by varying the joint interface’s compression preload. In a build-up structure, the location shift of vibration mode’s strain energy affects the dynamic responses together with the stiffness and damping properties of joint interfaces.
The thesis demonstrates that it is possible to achieve high stiffness and high damping simultaneously in materials and structures. Analysis of the vibrational strain energy distribution was found essential for the success of vibration control.
Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2015. , s. ix, 71
Serie
TRITA-IIP, ISSN 1650-1888
Nyckelord [en]
Vibration control, High dynamic stiffness, Metal matrix composite, Nano structures, Plasma enhanced chemical vapour deposition (PECVD), High power impulse magnetron sputtering (HiPIMS), Adiabatic, Machining, Regenerative tool chatter
Nationell ämneskategori
Nanoteknik Produktionsteknik, arbetsvetenskap och ergonomi Kompositmaterial och -teknik Fusion, plasma och rymdfysik Kemi Bearbetnings-, yt- och fogningsteknik Teknisk mekanik
Forskningsämne
Industriell produktion
Identifikatorer
URN: urn:nbn:se:kth:diva-176869ISBN: 978-91-7595-740-1 (tryckt)OAI: oai:DiVA.org:kth-176869DiVA, id: diva2:868453
Disputation
2015-12-01, M311, Brinellvägen 68, KTH, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
EU, FP7, Sjunde ramprogrammet, 608800EU, FP7, Sjunde ramprogrammet, 260048VINNOVA, E!4329VINNOVA, HydroMod2015-11-112015-11-102023-02-15Bibliografiskt granskad
Delarbeten