Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Numerical Solution of a Nonlinear Inverse Heat Conduction Problem
Linköpings universitet, Matematiska institutionen. Linköpings universitet. (Scientific Computing)
2010 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

 The inverse heat conduction problem also frequently referred as the sideways heat equation, in short SHE, is considered as a mathematical model for a real application, where it is desirable for someone to determine the temperature on the surface of a body. Since the surface itself is inaccessible for measurements, one is restricted to use temperature data from the interior measurements. From a  mathematical point of view, the entire situation leads to a non-characteristic Cauchy problem, where by using recorded temperature one can solve a well-posed nonlinear problem in the finite region for computing heat flux, and consequently obtain the Cauchy data [u, ux]. Further by using these data and by performing an appropriate method, e.g. a space marching method, one can eventually achieve the desired temperature at x = 0.

The problem is severely ill-posed in the sense that the solution does not depend continuously on the data. The problem solved by two different methods, and for both cases we stabilize the computations by replacing the time derivative in the heat equation by a bounded operator. The first one, a spectral method based on finite Fourier space is illustrated to supply an analytical approach for approximating the time derivative. In order to get a better accuracy in the numerical computation, we use cubic spline function for approximating the time derivative in the least squares sense.

The inverse problem we want to solve, by using Cauchy data, is a nonlinear heat conduction problem in one space dimension. Since the temperature data u = g(t) is recorded, e.g. by a thermocouple, it usually contains some perturbation in the data. Thus the solution can be severely ill-posed if the Cauchy data become very noisy. Two experiments are presented to test the proposed approach.

Ort, förlag, år, upplaga, sidor
2010. , s. 71
Nyckelord [en]
inverse problem, ill-posed, Cauchy problem, heat conduction, well-posed, nonlinear problem, spline derivative, spectral method.
Nationell ämneskategori
Beräkningsmatematik
Identifikatorer
URN: urn:nbn:se:liu:diva-57486ISRN: LiTH - MAT - EX - 2010 / 10 - SEOAI: oai:DiVA.org:liu-57486DiVA, id: diva2:325988
Presentation
2010-06-10, Kompakta rummet, MAI, 13:15 (Engelska)
Uppsök
fysik/kemi/matematik
Handledare
Examinatorer
Tillgänglig från: 2010-06-22 Skapad: 2010-06-21 Senast uppdaterad: 2010-06-22Bibliografiskt granskad

Open Access i DiVA

fulltext(1126 kB)2481 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1126 kBChecksumma SHA-512
54dbac5b9167bae9d9bf9a02b35ce6d034d25bfe8e3176b65dfaeeef32581749b1819e2a6a03fd2ce3678db05def8d688c8cfd15f5b32c02d99ce72f3392ffbf
Typ fulltextMimetyp application/pdf

Sök vidare i DiVA

Av författaren/redaktören
Hussain, Muhammad Anwar
Av organisationen
Matematiska institutionenLinköpings universitet
Beräkningsmatematik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 2487 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 380 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf