Digitala Vetenskapliga Arkivet

Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Study on Class-Specifically Discounted Belief for Ensemble Classifiers
Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
2008 (Engelska)Ingår i: Proceedings of the IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI 2008), IEEE Press, 2008, s. 614-619Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Ensemble classifiers are known to generally perform better than their constituent classifiers. Whereas a lot of work has been focusing on the generation of classifiers for ensembles, much less attention has been given to the fusion of individual classifier outputs. One approach to fuse the outputs is to apply Shafer’s theory of evidence, which provides a flexible framework for expressing and fusing beliefs. However, representing and fusing beliefs is non-trivial since it can be performed in a multitude of ways within the evidential framework. In a previous article, we compared different evidential combination rules for ensemble fusion. The study involved a single belief representation which involved discounting (i.e., weighting) the classifier outputs with classifier reliability. The classifier reliability was interpreted as the classifier’s estimated accuracy, i.e., the percentage of correctly classified examples. However, classifiers may have different performance for different classes and in this work we assign the reliability of a classifier output depending on the classspecific reliability of the classifier. Using 27 UCI datasets, we compare the two different ways of expressing beliefs and some evidential combination rules. The result of the study indicates that there is indeed an advantage of utilizing class-specific reliability compared to accuracy in an evidential framework for combining classifiers in the ensemble design considered.

Ort, förlag, år, upplaga, sidor
IEEE Press, 2008. s. 614-619
Nyckelord [en]
ensemble classifiers, random forests, evidence theory, Dempster-Shafer theory, combination rules
Forskningsämne
Teknik
Identifikatorer
URN: urn:nbn:se:his:diva-3627DOI: 10.1109/MFI.2008.4648012ISI: 000265022100009Scopus ID: 2-s2.0-67650514819ISBN: 978-1-4244-2144-2 OAI: oai:DiVA.org:his-3627DiVA, id: diva2:291340
Konferens
2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, MFI;Seoul;20 August 2008 through22 August 2008
Tillgänglig från: 2010-02-01 Skapad: 2010-02-01 Senast uppdaterad: 2017-11-27

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Sök vidare i DiVA

Av författaren/redaktören
Johansson, RonnieBoström, HenrikKarlsson, Alexander
Av organisationen
Institutionen för kommunikation och informationForskningscentrum för Informationsteknologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 1048 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf