Digitala Vetenskapliga Arkivet

Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Models for coupled active-passive population dynamics: Mathematical analysis and simulation
Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).ORCID-id: 0000-0002-5887-5040
2020 (Engelska)Doktorsavhandling, monografi (Övrigt vetenskapligt)
Abstract [en]

In this dissertation, we study models for coupled active--passive pedestrian dynamics from mathematical analysis and simulation perspectives. The general aim is to contribute to a better understanding of complex pedestrian flows. This work comes in three main parts, in which we adopt distinct perspectives and conceptually different tools from lattice gas models, partial differential equations, and stochastic differential equations, respectively. In part one, we introduce two lattice models for active--passive pedestrian dynamics. In a first model, using descriptions based on the simple exclusion process, we study the dynamics of pedestrian escape from an obscure room in a lattice domain with two species of particles (pedestrians). The main observable is the evacuation time as a function of the parameters caracterizing the motion of the active pedestrians. Our Monte Carlo simulation results show that the presence of the active pedestrians can favor the evacuation of the passive ones. We interpret this phenomenon as a discrete space counterpart of the so-called drafting effect. In a second model, we consider again a microscopic approach based on a modification of the simple exclusion process formulated for active--passive populations of interacting pedestrians. The model describes a scenario where pedestrians are walking in a built environment and enter a room from two opposite sides. For such counterflow situation, we have found out that the motion of active particles improves the outgoing current of the passive particles. In part two, we study a fluid-like driven system modeling active--passive pedestrian dynamics in a heterogenous domain. We prove the well-posedness of a nonlinear coupled parabolic system that models the evolution of the complex pedestrian flow by using special energy estimates, a Schauder's fixed point argument and the properties of the nonlinearity's structure. In the third part, we describe via a coupled nonlinear system of Skorohod-like stochastic differential equations the dynamics of active--passive pedestrians dynamics through a heterogenous domain in the presence of fire and smoke. We prove the existence and uniqueness of strong solutions to our model when reflecting boundary conditions are imposed on the boundaries. To achieve this we used compactness methods and the Skorohod's representation of solutions to SDEs posed in bounded domains. Furthermore, we study an homogenization setting for a toy model (a semi-linear elliptic equation) where later on our pedestrian models can be studied.

Abstract [en]

In this dissertation, we study models for coupled active-passive pedestrian dynamics from mathematical analysis and simulation perspectives. This work comes in three main parts, in which we adopt distinct perspectives and conceptually different tools from lattice gas models, partial differential equations, and stochastic differential equations, respectively. In part one, we introduce two lattice models for active-passive pedestrian dynamics. In a first model, using descriptions based on the simple exclusion process, we study the dynamics of pedestrian escape from an obscure room in a lattice domain with two species of particles (pedestrians). The main observable is the evacuation time as a function of the parameters caracterizing the motion of the active pedestrians. Our Monte Carlo simulation results show that the presence of the active pedestrians can favor the evacuation of the passive ones. We interpret this phenomenon as a discrete space counterpart of the so-called drafting effect. In a second model, we consider again a microscopic approach based on a modification of the simple exclusion process formulated for active-passive populations of interacting pedestrians. The model describes a scenario where pedestrians are walking in a built environment and enter a room from two opposite sides. We have found out that the motion of active particles improves the outgoing current of the passive particles. In part two, we study a fluid-like driven system modeling active-passive pedestrian dynamics in a heterogenous domain. We prove the well-posedness of a nonlinear coupled parabolic system that models the evolution of the complex pedestrian flow by using special energy estimates, a Schauder's fixed point argument and the properties of the nonlinearity's structure. In the third part, we describe via a coupled nonlinear system of Skorohod-like stochastic differential equations the dynamics of active-passive pedestrians dynamics through a heterogenous domain in the presence of fire and smoke. We prove the existence and uniqueness of strong solutions to our model when reflecting boundary conditions are imposed on the boundaries. To achieve this we used compactness methods and the Skorohod's representation of solutions to SDEs posed in bounded domains. Furthermore, we study an homogenization setting for a toy model where later on our pedestrian models can be studied.

Ort, förlag, år, upplaga, sidor
Karlstad: Karlstads universitet, 2020. , s. 182
Serie
Karlstad University Studies, ISSN 1403-8099 ; 2020:35
Nyckelord [en]
pedestrian dynamics, simple exclusion process, Forchheimer flows, Skorohod equations, nonlinear coupling, heterogenous domain, homogenization, drafting, evacuation
Nationell ämneskategori
Matematik
Forskningsämne
Matematik
Identifikatorer
URN: urn:nbn:se:kau:diva-81114ISBN: 978-91-7867-164-9 (tryckt)ISBN: 978-91-7867-168-7 (digital)OAI: oai:DiVA.org:kau-81114DiVA, id: diva2:1484325
Disputation
2020-12-03, 21A342, Universitetsgatan 2, 651 88, Karlstad, 15:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2020-11-10 Skapad: 2020-10-28 Senast uppdaterad: 2020-11-10Bibliografiskt granskad

Open Access i DiVA

fulltext(5306 kB)581 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 5306 kBChecksumma SHA-512
5055981783fffe5907f183bc1e0c6d15b7597b3ec9d8934809bad996b55d05ce63101a09b591df718381078ea328eeaf1dbac1e231b33cceb4557cb282eb924c
Typ fulltextMimetyp application/pdf

Sök vidare i DiVA

Av författaren/redaktören
Thieu, Thi Kim Thoa
Av organisationen
Institutionen för matematik och datavetenskap (from 2013)
Matematik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 581 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 683 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf