Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Deep Neural Network-based Impacts Analysis of Multimodal Factors on Heat Demand Prediction
Beijing University of Posts and Telecommunications, Beijing, China.
Beijing University of Posts and Telecommunications, Beijing, China.
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.ORCID-id: 0000-0002-6279-4446
Shandong University, 12589 Jinan, Shandong China.
Visa övriga samt affilieringar
(Engelska)Ingår i: IEEE Transactions on Big Data, ISSN 2372-2096Artikel i tidskrift (Refereegranskat) Epub ahead of print
Abstract [en]

Prediction of heat demand using artificial neural networks has attracted enormous research attention. Weather conditions, such as direct solar irradiance and wind speed, have been identified as key parameters affecting heat demand. This paper employs an Elman neural network to investigate the impacts of direct solar irradiance and wind speed on the heat demand from the perspective of the entire district heating network. Results of the overall mean absolute percentage error (MAPE) show that direct solar irradiance and wind speed have quite similar impacts. However, the involvement of direct solar irradiance can clearly reduce the maximum absolute deviation when only involving direct solar irradiance and wind speed, respectively. In addition, the simultaneous involvement of both wind speed and direct solar irradiance does not show an obvious improvement of MAPE. Moreover, the prediction accuracy can also be affected by other factors like data discontinuity and outliers.

Ort, förlag, år, upplaga, sidor
IEEE.
Nyckelord [en]
District heating, deep learning, Elman neural network, heat demand, direct solar irradiance, wind speed
Nationell ämneskategori
Energiteknik
Identifikatorer
URN: urn:nbn:se:mdh:diva-46991DOI: 10.1109/TBDATA.2019.2907127OAI: oai:DiVA.org:mdh-46991DiVA, id: diva2:1392236
Tillgänglig från: 2020-02-06 Skapad: 2020-02-06 Senast uppdaterad: 2020-02-24Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Li, HailongWallin, Fredrik
Av organisationen
Framtidens energi
Energiteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf