Digitala Vetenskapliga Arkivet

Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Comparative Study of Kernel Logistic Regression, Radial Basis Function Classifier, Multinomial Naïve Bayes, and Logistic Model Tree for Flash Flood Susceptibility Mapping
University of Transport Technology, Hanoi, Viet Nam.
Institute of Geological Sciences, Vietnam Academy of Sciences and Technology, Dong da, Hanoi, Viet Nam.
Faculty of Geography, VNU University of Science, Hanoi, Viet Nam.
School of Resources and Safety Engineering, Central South University, Changsha, China.
Visa övriga samt affilieringar
2020 (Engelska)Ingår i: Water, ISSN 2073-4441, E-ISSN 2073-4441, Vol. 12, nr 1, s. 1-21, artikel-id 239Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Risk of flash floods is currently an important problem in many parts of Vietnam. In this study, we used four machine-learning methods, namely Kernel Logistic Regression (KLR), Radial Basis Function Classifier (RBFC), Multinomial Naïve Bayes (NBM), and Logistic Model Tree (LMT) to generate flash flood susceptibility maps at the minor part of Nghe An province of the Center region (Vietnam) where recurrent flood problems are being experienced. Performance of these four methods was evaluated to select the best method for flash flood susceptibility mapping. In the model studies, ten flash flood conditioning factors, namely soil, slope, curvature, river density, flow direction, distance from rivers, elevation, aspect, land use, and geology, were chosen based on topography and geo-environmental conditions of the site. For the validation of models, the area under Receiver Operating Characteristic (ROC), Area Under Curve (AUC), and various statistical indices were used. The results indicated that performance of all the models is good for generating flash flood susceptibility maps (AUC = 0.983–0.988). However, performance of LMT model is the best among the four methods (LMT: AUC = 0.988; KLR: AUC = 0.985; RBFC: AUC = 0.984; and NBM: AUC = 0.983). The present study would be useful for the construction of accurate flash flood susceptibility maps with the objectives of identifying flood-susceptible areas/zones for proper flash flood risk management.

Ort, förlag, år, upplaga, sidor
Switzerland: MDPI, 2020. Vol. 12, nr 1, s. 1-21, artikel-id 239
Nyckelord [en]
flash flood, kernel logistic regression, radial basis function network, multinomial naïve
Nationell ämneskategori
Geoteknik
Forskningsämne
Geoteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-77419DOI: 10.3390/w12010239ISI: 000519847200239Scopus ID: 2-s2.0-85079492140OAI: oai:DiVA.org:ltu-77419DiVA, id: diva2:1385815
Anmärkning

Validerad;2020;Nivå 2;2020-01-24 (johcin)

Tillgänglig från: 2020-01-15 Skapad: 2020-01-15 Senast uppdaterad: 2020-04-28Bibliografiskt granskad

Open Access i DiVA

fulltext(9988 kB)31 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 9988 kBChecksumma SHA-512
84a0a7cbe0dad490bf366a2ef96b192db2308e065d1c7d4b84deba58f0e15df76b5c777db9115adcd442e104cc1ba703498e025ecc7d55701b0f32cd7c27d8e5
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Sök vidare i DiVA

Av författaren/redaktören
Al-Ansari, Nadhir
Av organisationen
Geoteknologi
I samma tidskrift
Water
Geoteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 31 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 101 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf