Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Impact of nanoparticle magnetization on the 3D formation of dual-phase Ni/NiO nanoparticle-based nanotrusses
Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska fakulteten.
Department of Intelligent Mechanical Systems, Tokyo Metropolitan University, Tokyo, Japan.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0002-6602-7981
Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: Journal of nanoparticle research, ISSN 1388-0764, E-ISSN 1572-896X, Vol. 21, nr 11, artikel-id 21:228Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Magnetic nanoparticles with average size 30 nm were utilized to build three-dimensional framework structures—nanotrusses. In dual-phase Ni/NiO nanoparticles, there is a strong correlation between the amount of magnetic Ni and the final size and shape of the nanotruss. As it decreases, the length of the individual nanowires within the trusses also decreases, caused by a higher degree of branching of the wires. The position and orientation of the non-magnetic material within the truss structure was also investigated for the different phase compositions. For lower concentrations of NiO phase, the electrically conducting Ni-wire framework is maintained through the preferential bonding between the Ni crystals. For larger concentrations of NiO phase, the Ni-wire framework is interrupted by the NiO. The ability to use nanoparticles that are only partly oxidized in the growth of nanotruss structures is of great importance. It opens the possibility for using not only magnetic metals such as pure Ni, Fe, and Co, but also to use dual-phase nanoparticles that can strongly increase the efficiency of e.g. catalytic electrodes and fuel cells.

Ort, förlag, år, upplaga, sidor
Springer-Verlag New York, 2019. Vol. 21, nr 11, artikel-id 21:228
Nyckelord [en]
Ni, NiO, Nanotruss, Nanoparticle, Magnetic assembly
Nationell ämneskategori
Materialkemi
Identifikatorer
URN: urn:nbn:se:liu:diva-161747DOI: 10.1007/s11051-019-4661-8ISI: 000494039300001OAI: oai:DiVA.org:liu-161747DiVA, id: diva2:1368853
Anmärkning

Funding agencies

Tillgänglig från: 2019-11-08 Skapad: 2019-11-08 Senast uppdaterad: 2019-11-19Bibliografiskt granskad
Ingår i avhandling
1. Plasma Synthesis and Self-Assembly of Magnetic Nanoparticles
Öppna denna publikation i ny flik eller fönster >>Plasma Synthesis and Self-Assembly of Magnetic Nanoparticles
2019 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Nanomaterials are important tools for enabling technological progress as they can provide dramatically different properties as compared to the bulk counterparts. The field of nanoparticles is one of the most investigated within nanomaterials, thanks to the existing, relatively simple, means of manufacturing. In this thesis, high-power pulsed hollow cathode sputtering is used to nucleate and grow magnetic nanoparticles in a plasma. This sputtering technique provides a high degree of ionization of the sputtered material, which has previously been shown to aid in the growth of the nanoparticles. The magnetic properties of the particles are utilized and makes it possible for the grown particles to act as building blocks for self-assembly into more sophisticated nano structures, particularly when an external magnetic field is applied. These structures created are termed “nanowires” or “nanotrusses”, depending on the level of branching and inter-linking that occurs.

Several different elements have been investigated in this thesis. In a novel approach, it is shown how nanoparticles with more advanced structures, and containing material from two hollow cathodes, can be fabricated using high-power pulses. The dual-element particles are achieved by using two distinct and individual elemental cathodes, and a pulse process that allows tuning of individual pulses separately to them. Nanoparticles grown and investigated are Fe, Ni, Pt, Fe-Ni and Ni-Pt. Alternatively, the addition of oxygen to the process allows the formation of oxide or hybrid metal oxide – metal particles. For all nanoparticles containing several elements, it is demonstrated that the stoichiometry can be easily varied, either by the amount of reactive gas let into the process or by tuning the amount of sputtered material through adjusting the electric power supplied to the different cathodes.

One aim of the presented work is to find a suitable material for the use as a catalyst in the production of H2 gas through the process of water splitting. H2 is a good candidate to replace fossil fuels as an energy carrier. However, rare elements (such as Ir or Pt) needs to be used as the catalyst, otherwise a high overpotential is required for the splitting to occur, leading to a low efficiency. This work demonstrates a possible route to avoid this, by using nanomaterials to increase the surface-to-volume ratio, as well as optimizing the elemental ratio between different materials to lower the amount of noble elements required. 

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2019. s. 58
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2007
Nyckelord
Plasma, Synthesis, Self-Assembly, Magnetic, Nanoparticles
Nationell ämneskategori
Fusion, plasma och rymdfysik
Identifikatorer
urn:nbn:se:liu:diva-161300 (URN)10.3384/diss.diva-161300 (DOI)9789176850091 (ISBN)
Disputation
2019-12-10, Planck, Fysikhuset, Campus Valla, Linköping, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2019-11-08 Skapad: 2019-10-28 Senast uppdaterad: 2019-11-08Bibliografiskt granskad

Open Access i DiVA

fulltext(3662 kB)22 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 3662 kBChecksumma SHA-512
9712fadfb6e3982a79fcc4f7fd77e4f52d72d6d851e09a760eb0e1d7070a55615b0e2c4effd4ea422adf2e4e72ae5a9e665d282bb16bb100bc793fb9812a4949
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Ekeroth, SebastianBoyd, RobertMünger, PeterHelmersson, Ulf
Av organisationen
Plasma och beläggningsfysikTekniska fakultetenTeoretisk Fysik
I samma tidskrift
Journal of nanoparticle research
Materialkemi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 22 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 76 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf