Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
X-ray microcomputed tomography (µCT) as a potential tool in Geometallurgy
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.ORCID-id: 0000-0002-8693-1054
2019 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

In recent years, automated mineralogy has become an essential tool in geometallurgy. Automated mineralogical tools allow the acquisition of mineralogical and liberation data of ore particles in a sample. These particle data can then be used further for particle-based mineral processing simulation in the context of geometallurgy. However, most automated mineralogical tools currently in application are based on two-dimensional (2D) microscopy analysis, which are subject to stereological error when analyzing three-dimensional(3D) object such as ore particles. Recent advancements in X-ray microcomputed tomography (µCT) have indicated great potential of such system to be the next automated mineralogical tool. µCT's main advantage lies on its ability in monitoring 3D internal structure of the ore at resolutions down to few microns, eliminating stereological error obtained from 2D analysis. Aided with the continuous developments of computing capability of 3D data, it is only the question of time that µCT system becomes an interesting alternative in automated mineralogy system.

This study aims to evaluate the potential of implementing µCT as an automated mineralogical tool in the context of geometallurgy. First, a brief introduction about the role of automated mineralogy in geometallurgy is presented. Then, the development of µCT system to become an automated mineralogical tool in the context of geometallurgy andprocess mineralogy is discussed (Paper 1). The discussion also reviews the available data analysis methods in extracting ore properties (size, mineralogy, texture) from the 3D µCT image (Paper 2). Based on the review, it was found that the main challenge inperforming µCT analysis of ore samples is the difficulties associated to the segmentation of the mineral phases in the dataset. This challenge is adressed through the implementation of machine learning techniques using Scanning Electron Microscope (SEM) data as a reference to differentiate the mineral phases in the µCT dataset (Paper 3).

Ort, förlag, år, upplaga, sidor
Luleå: Luleå University of Technology, 2019. , s. 74
Serie
Licentiate thesis / Luleå University of Technology, ISSN 1402-1757
Nyckelord [en]
X-ray microcomputed tomography, geometallurgy, automated mineralogy, ore characterization
Nationell ämneskategori
Mineral- och gruvteknik Metallurgi och metalliska material
Forskningsämne
Mineralteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-76576ISBN: 978-91-7790-492-2 (tryckt)ISBN: 978-91-7790-493-9 (digital)OAI: oai:DiVA.org:ltu-76576DiVA, id: diva2:1366731
Presentation
2019-12-13, F531, Luleå University of Technology, Luleå, 10:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
EU, Horisont 2020, 722677Tillgänglig från: 2019-10-30 Skapad: 2019-10-30 Senast uppdaterad: 2019-11-27Bibliografiskt granskad
Delarbeten
1. Use of X-ray Micro-computed Tomography (µCT) for 3-D Ore Characterization: A Turning Point in Process Mineralogy
Öppna denna publikation i ny flik eller fönster >>Use of X-ray Micro-computed Tomography (µCT) for 3-D Ore Characterization: A Turning Point in Process Mineralogy
2019 (Engelska)Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

In recent years, automated mineralogy has become an essential enabling technology in the field of process mineralogy, allowing better understanding between mineralogy and the beneficiation process. Recent developments in X-ray micro-computed tomography (μCT) as a non-destructive technique have indicated great potential to become the next automated mineralogy technique. μCT’s main advantage lies in its ability to allow 3-D monitoring of internal structure of the ore at resolutions down to a few hundred nanometers, thereby eliminating the stereological error encountered in conventional 2-D analysis. Driven by the technological and computational progress, the technique is continuously developing as an analysis tool in ore characterization and subsequently it foreseen thatμCT will become an indispensable technique in the field of process mineralogy. Although several software tools have been developed for processing μCT dataset, but the main challenge in μCT data analysis remains in the mineralogical analysis, where μCT data often lacks contrast between mineral phases, making segmentation difficult. In this paper, an overview of some current applications of μCT in ore characterization is reviewed, alongside with it potential implications to process mineralogy. It also describes the current limitations of its application and concludes with outlook on the future development of 3-D ore characterization.

Nyckelord
X-ray micro-tomography (µCT), process mineralogy, ore characterization
Nationell ämneskategori
Metallurgi och metalliska material
Forskningsämne
Mineralteknik
Identifikatorer
urn:nbn:se:ltu:diva-73716 (URN)
Konferens
26th International Mining Congress and Exhibition (IMCET 2019), Antalya, April 16-19, 2019
Forskningsfinansiär
EU, Horisont 2020
Tillgänglig från: 2019-04-23 Skapad: 2019-04-23 Senast uppdaterad: 2019-10-30Bibliografiskt granskad
2. X-ray Microcomputed Tomography (µCT) for Mineral Characterization: A Review of Data Analysis Methods
Öppna denna publikation i ny flik eller fönster >>X-ray Microcomputed Tomography (µCT) for Mineral Characterization: A Review of Data Analysis Methods
2019 (Engelska)Ingår i: Minerals, ISSN 2075-163X, E-ISSN 2075-163X, Vol. 9, nr 3, artikel-id 183Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The main advantage of X-ray microcomputed tomography (µCT) as a non-destructive imaging tool lies in its ability to analyze the three-dimensional (3D) interior of a sample, therefore eliminating the stereological error exhibited in conventional two-dimensional (2D) image analysis. Coupled with the correct data analysis methods, µCT allows extraction of textural and mineralogical information from ore samples. This study provides a comprehensive overview on the available and potentially useful data analysis methods for processing 3D datasets acquired with laboratory µCT systems. Our study indicates that there is a rapid development of new techniques and algorithms capable of processing µCT datasets, but application of such techniques is often sample-specific. Several methods that have been successfully implemented for other similar materials (soils, aggregates, rocks) were also found to have the potential to be applied in mineral characterization. The main challenge in establishing a µCT system as a mineral characterization tool lies in the computational expenses of processing the large 3D dataset. Additionally, since most of the µCT dataset is based on the attenuation of the minerals, the presence of minerals with similar attenuations limits the capability of µCT in mineral segmentation. Further development on the data processing workflow is needed to accelerate the breakthrough of µCT as an analytical tool in mineral characterization.

Ort, förlag, år, upplaga, sidor
Basel, Switzerland: MDPI, 2019
Nyckelord
X-ray microcomputed tomography, data analysis, mineral characterization, texture, mineralogy
Nationell ämneskategori
Metallurgi och metalliska material
Forskningsämne
Mineralteknik
Identifikatorer
urn:nbn:se:ltu:diva-73224 (URN)10.3390/min9030183 (DOI)000464421700002 ()2-s2.0-85064225739 (Scopus ID)
Anmärkning

Validerad;2019;Nivå 2;2019-03-18 (svasva)

Tillgänglig från: 2019-03-18 Skapad: 2019-03-18 Senast uppdaterad: 2020-02-07Bibliografiskt granskad
3. Application of machine learning techniques in mineral phase segmentation for X-ray microcomputed tomography (µCT) data
Öppna denna publikation i ny flik eller fönster >>Application of machine learning techniques in mineral phase segmentation for X-ray microcomputed tomography (µCT) data
Visa övriga...
2019 (Engelska)Ingår i: Minerals Engineering, ISSN 0892-6875, E-ISSN 1872-9444, Vol. 142, artikel-id 105882Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

X-ray microcomputed tomography (µCT) offers a non-destructive three-dimensional analysis of ores but its application in mineralogical analysis and mineral segmentation is relatively limited. In this study, the application of machine learning techniques for segmenting mineral phases in a µCT dataset is presented. Various techniques were implemented, including unsupervised classification as well as grayscale-based and feature-based supervised classification. A feature matching method was used to register the back-scattered electron (BSE) mineral map to its corresponding µCT slice, allowing automatic annotation of minerals in the µCT slice to create training data for the classifiers. Unsupervised classification produced satisfactory results in terms of segmenting between amphibole, plagioclase, and sulfide phases. However, the technique was not able to differentiate between sulfide phases in the case of chalcopyrite and pyrite. Using supervised classification, around 50–60% of the chalcopyrite and 97–99% of pyrite were correctly identified. Feature based classification was found to have a poorer sensitivity to chalcopyrite, but produced a better result in segmenting between the mineral grains, as it operates based on voxel regions instead of individual voxels. The mineralogical results from the 3D µCT data showed considerable difference compared to the BSE mineral map, indicating stereological error exhibited in the latter analysis. The main limitation of this approach lies in the dataset itself, in which there was a significant overlap in grayscale values between chalcopyrite and pyrite, therefore highly limiting the classifier accuracy.

Ort, förlag, år, upplaga, sidor
Elsevier, 2019
Nyckelord
X-ray micro-tomography (µCT), Machine learning, Mineral segmentation, Feature-based classification, Feature matching
Nationell ämneskategori
Metallurgi och metalliska material Geologi
Forskningsämne
Mineralteknik; Malmgeologi
Identifikatorer
urn:nbn:se:ltu:diva-75703 (URN)10.1016/j.mineng.2019.105882 (DOI)000488141400014 ()2-s2.0-85070948239 (Scopus ID)
Anmärkning

Validerad;2019;Nivå 2;2019-08-27 (svasva)

Tillgänglig från: 2019-08-27 Skapad: 2019-08-27 Senast uppdaterad: 2020-02-03Bibliografiskt granskad

Open Access i DiVA

fulltext(52295 kB)25 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 52295 kBChecksumma SHA-512
a4370045ad960ae316f2cc0e701f4d67ec5cbe2e5d3fd4925a1ec0f6218c39452d5684505b0795614ece9782bd62bc2dca78737989d78bb1a7f5241bf57979d1
Typ fulltextMimetyp application/pdf

Sök vidare i DiVA

Av författaren/redaktören
Guntoro, Pratama Istiadi
Av organisationen
Mineralteknik och metallurgi
Mineral- och gruvteknikMetallurgi och metalliska material

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 25 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 150 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf