Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The Sixth Visual Object Tracking VOT2018 Challenge Results
University of Ljubljana, Slovenia.
University of Birmingham, United Kingdom.
Czech Technical University, Czech Republic.
Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0002-6096-3648
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: Computer Vision – ECCV 2018 Workshops: Munich, Germany, September 8–14, 2018 Proceedings, Part I / [ed] Laura Leal-Taixé and Stefan Roth, Cham: Springer Publishing Company, 2019, s. 3-53Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The Visual Object Tracking challenge VOT2018 is the sixth annual tracker benchmarking activity organized by the VOT initiative. Results of over eighty trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis and a “real-time” experiment simulating a situation where a tracker processes images as if provided by a continuously running sensor. A long-term tracking subchallenge has been introduced to the set of standard VOT sub-challenges. The new subchallenge focuses on long-term tracking properties, namely coping with target disappearance and reappearance. A new dataset has been compiled and a performance evaluation methodology that focuses on long-term tracking capabilities has been adopted. The VOT toolkit has been updated to support both standard short-term and the new long-term tracking subchallenges. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website (http://votchallenge.net).

Ort, förlag, år, upplaga, sidor
Cham: Springer Publishing Company, 2019. s. 3-53
Serie
Lecture Notes in Computer Science, ISSN 0302-9743, E-ISSN 1611-3349 ; 11129
Nationell ämneskategori
Datorseende och robotik (autonoma system) Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:liu:diva-161343DOI: 10.1007/978-3-030-11009-3_1ISBN: 9783030110086 (tryckt)ISBN: 9783030110093 (digital)OAI: oai:DiVA.org:liu-161343DiVA, id: diva2:1366619
Konferens
Computer Vision – ECCV 2018 Workshops, Munich, Germany, September 8–14, 2018
Tillgänglig från: 2019-10-30 Skapad: 2019-10-30 Senast uppdaterad: 2019-10-30Bibliografiskt granskad

Open Access i DiVA

The Sixth Visual Object Tracking VOT2018 Challenge Results(1596 kB)26 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1596 kBChecksumma SHA-512
5996f25df8331523743e5aaeb1ce0ac6c4337dec34744d57b3f17f1a98d57965e437d7f200ef4f772a5df5c0fc9a2e94dca2ce3b98e05455373d3624102ea2cd
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Felsberg, MichaelBhat, GoutamEldesokey, AbdelrahmanKhan, Fahad ShahbazJohnander, JoakimDanelljan, Martin
Av organisationen
DatorseendeTekniska fakulteten
Datorseende och robotik (autonoma system)Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 26 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 37 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf