Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Effects of fineness and chemical composition of blast furnace slag on properties of alkali-activated binder
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.ORCID-id: 0000-0002-5328-4073
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.ORCID-id: 0000-0001-7279-6528
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.ORCID-id: 0000-0001-6287-2240
2019 (Engelska)Ingår i: Materials, ISSN 1996-1944, E-ISSN 1996-1944, Vol. 12, nr 20, artikel-id 3447Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Abstract: The effects of fines and chemical composition of three types of ground granulated blast furnace slag (GGBFS) on various concrete properties were studied. Those studied were alkali activated by liquid sodium silicate (SS) and sodium carbonate (SC). Flowability, setting times, compressive strength, efflorescence, and carbonation resistance and shrinkage were tested. The chemical composition and microstructure of the solidified matrixes were studied by X-ray diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) coupled with EDX analyser. The results showed that the particle size distribution of the slags and the activator type had significantly stronger effects on all measured properties than their chemical composition. The highest compressive strength values were obtained for the finest slag, which having also the lowest MgO content. SC-activated mortar produced nearly the same compressive strength values independently of the used slag. The most intensive efflorescence and the lowest carbonation resistance developed on mortars based on slag containing 12% of MgO and the lowest fineness. The slag with the highest specific surface area and the lowest MgO content developed a homogenous microstructure, highest reaction temperature and lowest drying shrinkage. Thermogravimetric analysis indicated the presence of C-(A)-S-H, hydrotalcite HT, and carbonate like-phases in all studied mortars.

Ort, förlag, år, upplaga, sidor
Basel, Switzerland: MDPI, 2019. Vol. 12, nr 20, artikel-id 3447
Nyckelord [en]
alkali-activated slag GBFS, strength, microstructure of AAS, hydration products, shrinkage
Nationell ämneskategori
Teknik och teknologier Annan materialteknik
Forskningsämne
Byggmaterial
Identifikatorer
URN: urn:nbn:se:ltu:diva-76497DOI: 10.3390/ma12203447ISI: 000498402100169PubMedID: 31640292Scopus ID: 2-s2.0-85074230932OAI: oai:DiVA.org:ltu-76497DiVA, id: diva2:1365376
Forskningsfinansiär
Luleå tekniska universitet, 143103
Anmärkning

Validerad;2019;Nivå 2;2019-10-28 (johcin)

Tillgänglig från: 2019-10-24 Skapad: 2019-10-24 Senast uppdaterad: 2019-12-18Bibliografiskt granskad
Ingår i avhandling
1. Shrinkage and Related Properties of Alkali-Activated Binders Based on High MgO Blast Furnace Slag
Öppna denna publikation i ny flik eller fönster >>Shrinkage and Related Properties of Alkali-Activated Binders Based on High MgO Blast Furnace Slag
2019 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Concrete is the second most used material in the world just after water. A drawback is that it is mostly based on Portland cement, which has an extremely high carbon footprint reaching a staggering 900 kg/tonne. The carbon dioxide emissions related to the production of the Portland cement accounts for nearly 8 % of the global total. Consequently, the construction sector is engaged in an active search for sustainable alternatives. Over the past few decades, alkali-activated materials (AAMs) emerged as one alternative and attracted strong scientific and commercial interests. Many industrial by-products produced in large volumes can be used as precursors for the AAMs system. The most common include blast furnace slag, fly ash, mine tailings, metallurgical slags, and bauxite residues. So far, products based on ground granulated blast furnace slag (GGBFS) showed the best price/performance ratio. Still, there are a number of unresolved issues, which must be addressed to ensure the economical and safe full-scale utilisation of that material. The research work presented in this thesis focuses on alkali-activated concretes based on Swedish water-cooled high-MgO ground granulated blast furnace slag. The objective of this work was to identify experimentally factors that are controlling the shrinkage and the creep of concretes made with this type of GGBFS and to understand their influence on various physical and chemical properties of fresh and solidified systems. Liquid sodium silicate, powder sodium carbonate and a combination of both were used to activate the binder chemically. Two curing procedures were followed; laboratory curing and heat curing at 65°C applied for 24 hours. Various properties were determined including workability, setting time, hydration heat development, shrinkage, creep, efflorescence, carbonation, compressive strength, microstructure and phase composition. Additionally, the effects of the activator type, dose, binder fines, binder composition and curing regime were investigated. The results revealed that the particle size distribution of the binder as well as the activator type and its dosage have strong effects on the produced materials. Increasing the activator amount or decreasing the alkali modulus of the used sodium silicate activator improved the early-age compressive strength and accelerated the hydration reaction. Alkali-activated high-MgO slag concrete showed higher autogenous and drying shrinkage, as well as higher creep in comparison to the Portland cement-based reference concrete. The sodium silicate increased the slump, shortened the setting time, increased the compressive strength and shrinkage but lowered the creep in comparison with the sodium carbonate-activated mixes. Replacing 20% of the slag with fly ash and decreasing the alkali modulus of the sodium silicate activator increased the autogenous shrinkage but decreased the ultimate drying shrinkage. Application of a heat treatment produced in general a higher early age compressive strength, a lower VI later strength development, a more porous microstructure and a decreased ultimate measured shrinkage. Sealed curing decreased the ultimate shrinkage by up to 50%. Some of the produced mixes showed strong efflorescence. Two years of curing in laboratory conditions resulted in an extensive carbonation of some of the mixes. This weakened the silicate binding of the gel and produced a coarser porosity due to the decalcification of C-(A)-S-H. The heat-cured samples activated with sodium silicate were the most affected. Many mixes showed an extensive microcracking of the binder matrix. However, the within this study newly developed mixes were substantially less effected. These optimised mixes were based on a combination of sodium silicate and sodium carbonate activators, combined with a heat treatment and partial replacement of the slag with fly ash. The main hydration phase that formed was C-(A)-S-H, with gaylussite, calcite, nahcolite and hydrotalcite as secondary phases. The partial replacement of slag with fly ash resulted in a dominant formation of N-(A)-S-H and C-(A)-S-H.

Ort, förlag, år, upplaga, sidor
Luleå University of Technology, 2019. s. 90
Serie
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Nyckelord
Alkali-activated slag, alkali-activated materials, high-MgO blast furnace slag, shrinkage, creep, carbonation, strength, heat curing
Nationell ämneskategori
Teknik och teknologier Annan materialteknik
Forskningsämne
Byggmaterial
Identifikatorer
urn:nbn:se:ltu:diva-76356 (URN)978-91-7790-469-4 (ISBN)978-91-7790-470-0 (ISBN)
Disputation
2019-12-10, C 305, LTU / C-Building, Luleå, 08:30 (Engelska)
Opponent
Handledare
Tillgänglig från: 2019-10-11 Skapad: 2019-10-11 Senast uppdaterad: 2019-11-27Bibliografiskt granskad

Open Access i DiVA

fulltext(4664 kB)17 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 4664 kBChecksumma SHA-512
8938e3f224a2feccee2996d60eac230d061c535ef37ffd9778537f6a56a76e30781e8585a077b2962b246c072a30a66d8e649f0ab7cfab66c224ddd27548d2b9
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Sök vidare i DiVA

Av författaren/redaktören
Humad, AbeerHabermehl-Cwirzen, KarinCwirzen, Andrzej
Av organisationen
Byggkonstruktion och brand
I samma tidskrift
Materials
Teknik och teknologierAnnan materialteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 17 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 21 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf