Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Evaluation of a Radiomics Model for Classification of Lung Nodules
KTH, Skolan för kemi, bioteknologi och hälsa (CBH).
2019 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)Alternativ titel
Utvärdering av en Radiomics-modell för klassificering av lungnoduler (Svenska)
Abstract [en]

Lung cancer has been a major cause of death among types of cancers in the world. In the early stages, lung nodules can be detected by the aid of imaging modalities such as Computed Tomography (CT). In this stage, radiologists look for irregular rounded-shaped nodules in the lung which are normally less than 3 centimeters in diameter. Recent advancements in image analysis have proven that images contain more information than regular parameters such as intensity, histogram and morphological details. Therefore, in this project we have focused on extracting quantitative, hand-crafted features from nearly 1400 lung CT images to train a variety of classifiers based on them. In the first experiment, in total 424 Radiomics features per image has been used to train classifiers such as: Random Forest (RF), Support Vector Machine (SVM), Decision Tree (DT), Naive Bayes (NB), Linear Discriminant Analysis (LDA) and Multi-Layer Perceptron (MLP). In the second experiment, we evaluate each feature category separately with our classifiers. The third experiment includes wrapper feature selection methods (Forward/Backward/Recursive) and filter-based feature selection methods (Fisher score, Gini Index and Mutual information). They have been implemented to find the most relevant feature set in model construction. Performance of each learning method has been evaluated by accuracy score, wherewe achieved the highest accuracy of 78% with Random Forest classifier (74% in 5-fold average) and 0.82 Area Under the Receiver Operating Characteristics (AUROC) curve. After RF, NB and MLP showed the best average accuracy of 71.4% and 71% respectively.

Ort, förlag, år, upplaga, sidor
2019. , s. 50
Serie
TRITA-CBH-GRU ; 2019:109
Nyckelord [en]
Lung Nodule, Radiomics, Tumor Classification
Nationell ämneskategori
Medicinteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-261623OAI: oai:DiVA.org:kth-261623DiVA, id: diva2:1359286
Ämne / kurs
Medicinsk teknik
Utbildningsprogram
Teknologie masterexamen - Medicinsk teknik
Presentation
2019-09-10, T2, Hälsovägen 11C,141 57 HUDDINGE, Stockholm, 13:00 (Engelska)
Handledare
Examinatorer
Tillgänglig från: 2019-10-11 Skapad: 2019-10-08 Senast uppdaterad: 2019-10-11Bibliografiskt granskad

Open Access i DiVA

PARASTU_RAHGOZAR_STUDENT_THESIS(1239 kB)19 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1239 kBChecksumma SHA-512
98eac60226eb87a5f6eef2f05279907acfd0a92214e9379ca75ffbf9240ba2b6e7c0473a8725aada21f858ccd28e284ea4a702394e996f9565ed6f1fca76b234
Typ fulltextMimetyp application/pdf

Av organisationen
Skolan för kemi, bioteknologi och hälsa (CBH)
Medicinteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 19 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 79 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf