Digitala Vetenskapliga Arkivet

Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Real-time object detection for autonomous vehicles using deep learning
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi.
2019 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

Self-driving systems are commonly categorized into three subsystems: perception, planning, and control. In this thesis, the perception problem is studied in the context of real-time object detection for autonomous vehicles. The problem is studied by implementing a cutting-edge real-time object detection deep neural network called Single Shot MultiBox Detector which is trained and evaluated on both real and virtual driving-scene data. The results show that modern real-time capable object detection networks achieve their fast performance at the expense of detection rate and accuracy. The Single Shot MultiBox Detector network is capable of processing images at over fifty frames per second, but scored a relatively low mean average precision score on a diverse driving- scene dataset provided by Berkeley University. Further development in both hardware and software technologies will presumably result in a better trade-off between run-time and detection rate. However, as the technologies stand today, general real-time object detection networks do not seem to be suitable for high precision tasks, such as visual perception for autonomous vehicles. Additionally, a comparison is made between two versions of the Single Shot MultiBox Detector network, one trained on a virtual driving-scene dataset from Ford Center for Autonomous Vehicles, and one trained on a subset of the earlier used Berkeley dataset. These results show that synthetic driving scene data possibly could be an alternative to real-life data when training object detecting networks

Ort, förlag, år, upplaga, sidor
2019. , s. 111
Serie
IT ; 19007
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
URN: urn:nbn:se:uu:diva-393999OAI: oai:DiVA.org:uu-393999DiVA, id: diva2:1356309
Utbildningsprogram
Masterprogram i datavetenskap
Handledare
Examinatorer
Tillgänglig från: 2019-10-01 Skapad: 2019-10-01 Senast uppdaterad: 2019-10-01Bibliografiskt granskad

Open Access i DiVA

fulltext(8533 kB)13043 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 8533 kBChecksumma SHA-512
f96dba1e62e5ed70fcc5cc80b2ef81accc1173725d7032741f65da705fd0374a75a67e96fa7af5a16df4975785b1bf16d633bf46d63398ed34f7ddf08c527de9
Typ fulltextMimetyp application/pdf

Av organisationen
Institutionen för informationsteknologi
Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 13050 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 2039 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf