Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Graphene-based plasmonic nanocomposites for highly enhanced solar-driven photocatalytic activities
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik, elektroteknik och matematik. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0001-8150-729X
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik, elektroteknik och matematik. Linköpings universitet, Tekniska fakulteten. School of Information Technology, Halmstad University, Halmstad, Sweden.
Department of Chemistry, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0002-9840-7364
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 9, nr 52, s. 30585-30598Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

High-efficiency photocatalysts are crucial for the removal of organic pollutants and environmental sustainability. In the present work, we report on a new low-temperature hydrothermal chemical method, assisted by ultrasonication, to synthesize disruptive plasmonic ZnO/graphene/Ag/AgI nanocomposites for solar-driven photocatalysis. The plasmonic nanocomposites were investigated by a wide range of characterization techniques, confirming successful formation of photocatalysts with excellent degradation efficiency. Using Congo red as a model dye molecule, our experimental results demonstrated a photocatalytic reactivity exceeding 90% efficiency after one hour simulated solar irradiation. The significantly enhanced degradation efficiency is attributed to improved electronic properties of the nanocomposites by hybridization of the graphene and to the addition of Ag/AgI which generates a strong surface plasmon resonance effect in the metallic silver further improving the photocatalytic activity and stability under solar irradiation. Scavenger experiments suggest that superoxide and hydroxyl radicals are responsible for the photodegradation of Congo red. Our findings are important for the fundamental understanding of the photocatalytic mechanism of ZnO/graphene/Ag/AgI nanocomposites and can lead to further development of novel efficient photocatalyst materials.

Ort, förlag, år, upplaga, sidor
Royal Meteorological Society, 2019. Vol. 9, nr 52, s. 30585-30598
Nationell ämneskategori
Den kondenserade materiens fysik
Identifikatorer
URN: urn:nbn:se:liu:diva-160568DOI: 10.1039/C9RA06273DISI: 000487989300064OAI: oai:DiVA.org:liu-160568DiVA, id: diva2:1355675
Anmärkning

Funding agencies: Department of Science and Technology (ITN) at Campus Norrkoping, Linkoping University, Sweden; Knut and Alice Wallenberg FoundationKnut & Alice Wallenberg Foundation

Tillgänglig från: 2019-09-30 Skapad: 2019-09-30 Senast uppdaterad: 2020-03-18Bibliografiskt granskad
Ingår i avhandling
1. Graphene-based nanocomposites for electronics and photocatalysis
Öppna denna publikation i ny flik eller fönster >>Graphene-based nanocomposites for electronics and photocatalysis
2019 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The development of future electronics depends on the availability of suitable functional materials. Printed electronics, for example, relies on access to highly conductive, inexpensive and printable materials, while strong light absorption and low carrier recombination rates are demanded in photocatalysis industry. Despite all efforts to develop new materials, it still remains a challenge to have all the desirable aspects in a single material. One possible route towards novel functional materials, with improved and unprecedented physical properties, is to form composites of different selected materials.

In this work, we report on hydrothermal growth and characterization of graphene/zinc oxide (GR/ZnO) nanocomposites, suited for electronics and photocatalysis application. For conductive purposes, highly Al-doped ZnO nanorods grown on graphene nanoplates (GNPs) prevent the GNPs from agglomerating and promote conductive paths between the GNPs. The effect of the ZnO nanorod morphology and GR dispersity on the nanocomposite conductivity and GR/ZnO nanorod bonding strength were investigated by conductivity measurements and optical spectroscopy. The inspected samples show that growth in high pH solutions promotes a better graphene dispersity, higher doping and enhanced bonding between the GNPs and the ZnO nanorods. Growth in low pH solutions yield samples characterized by a higher conductivity and a reduced number of surface defects.

In addition, different GR/ZnO nanocomposites, decorated with plasmonic silver iodide (AgI) nanoparticles, were synthesized and analyzed for solar-driven photocatalysis. The addition of Ag/AgI generates a strong surface plasmon resonance effect involving metallic Ag0, which redshifts the optical absorption maximum into the visible light region enhancing the photocatalytic performance under solar irradiation. A wide range of characterization techniques including, electron microscopy, photoelectron spectroscopy and x-ray diffraction confirm a successful formation of photocatalysts.

Our findings show that the novel proposed GR-based nanocomposites can lead to further development of efficient photocatalyst materials with applications in removal of organic pollutants, or for fabrication of large volumes of inexpensive porous conjugated GR-semiconductor composites.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2019. s. 52
Serie
Linköping Studies in Science and Technology. Licentiate Thesis, ISSN 0280-7971 ; 1847
Nyckelord
Graphene, Zinc oxide, Silver iodine, Plasmonics, Nanocomposites, Conjugated electronics, Photocatalysis, Photodegradation
Nationell ämneskategori
Materialkemi
Identifikatorer
urn:nbn:se:liu:diva-157095 (URN)10.3384/lic.diva-157095 (DOI)9789176850404 (ISBN)
Presentation
2019-06-13, K3, Kåkenhus, Norrköping, 14:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2019-05-28 Skapad: 2019-05-28 Senast uppdaterad: 2019-09-30Bibliografiskt granskad
2. Synthesis and Characterization of Some Nanostructured Materials for Visible Light-driven Photo Processes
Öppna denna publikation i ny flik eller fönster >>Synthesis and Characterization of Some Nanostructured Materials for Visible Light-driven Photo Processes
2020 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Nanostructured materials for visible light driven photo-processes such as photodegradation of organic pollutants and photoelectrochemical (PEC) water oxidation for hydrogen production are very attractive because of the positive impact on the environment. Metal oxides-based nanostructures are widely used in these photoprocesses due to their unique properties. But single nanostructured metal oxide material might suffer from low efficiency and instability in aqueous solutions under visible light. These facts make it important to have an efficient and reliable nanocomposite for the photo-processes. The combination of different nanomaterials to form a composite configuration can produce a material with new properties. The new properties which are due to the synergetic effect, are a combination of the properties of all the counterparts of the nanocomposite. Zinc oxides (ZnO) have unique optical and electrical properties which grant it to be used in optoelectronics, sensors, solar cells, nanogenerators, and photocatalysis activities. Although ZnO absorbs visible light from the sun due to the deep level band, it mainly absorbs ultraviolet wavelengths which constitute a small portion of the whole solar spectrum range. Also, ZnO has a problem with the high recombination rate of the photogenerated electrons. These problems might reduce its applicability to the photo-process. Therefore, our aim is to develop and investigate different nanocomposites materials based on the ZnO nanostructures for the enhancement of photocatalysis processes using the visible solar light as a green source of energy. Two photo-processes were applied to examine the developed nanocomposites through photocatalysis: (1) the photodegradation of organic dyes, (2) PEC water splitting. In the first photo-process, we used the ZnO nanoparticles (NPs), Magnesium (Mg)-doped ZnO NPs, and plasmonic ZnO/graphene-based nanocomposite for the decomposition of some organic dyes that have been used in industries. For the second photo-process, ZnO photoelectrode composite with different silver-based semiconductors to enhance the performance of the ZnO photoelectrode was used for PEC reaction analysis to perform water splitting. The characterization and photocatalysis experiment results showed remarkable enhancement in the photocatalysis efficiency of the synthesized nanocomposites. The observed improved properties of the ZnO are due to the synergetic effects are caused by the addition of the other nanomaterials. Hence, the present thesis attends to the synthesis and characterization of some nanostructured materials composite with ZnO that are promising candidates for visible light-driven photo-processes.  

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2020. s. 89
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2059
Nyckelord
ZnO, Nanoparticles, Nanocomposites, Heterostructures, Photocatalysis
Nationell ämneskategori
Materialkemi
Identifikatorer
urn:nbn:se:liu:diva-164334 (URN)10.3384/diss.diva-164334 (DOI)9789179298784 (ISBN)
Disputation
2020-04-17, K3 Önnesjösalen, Kåkenhus, Campus Norrköping, Norrköping, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2020-03-18 Skapad: 2020-03-18 Senast uppdaterad: 2020-03-24Bibliografiskt granskad

Open Access i DiVA

fulltext(2049 kB)83 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2049 kBChecksumma SHA-512
e0518c8ca7fe4163dc5e5735a714e9f950769d241ed89532baf476a5acc9004ef0f10d5221ef0e5d452aa8af6d5916aed176aa0feaaa61d7e347393a08bfe3b2
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Adam, Rania ElhadiChalangar, EbrahimPozina, GaliaLiu, XianjiePalisaitis, JustinasPettersson, HåkanWillander, MagnusNur, Omer
Av organisationen
Fysik, elektroteknik och matematikTekniska fakultetenTunnfilmsfysikYtors Fysik och Kemi
I samma tidskrift
RSC Advances
Den kondenserade materiens fysik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 83 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 486 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf