Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Validated imaging biomarkers as decision-making tools in clinical trials and routine practice: current status and recommendations from the EIBALL* subcommittee of the European Society of Radiology (ESR)
Cancer Res UK Imaging Ctr, England; Royal Marsden Hosp, England.
Ghent Univ Hosp, Belgium.
QUIBIM SL Fe Hlth Res Inst, Spain.
Univ Freiburg, Germany.
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: Insight into Imaging, ISSN 1869-4101, E-ISSN 1869-4101, Vol. 10, nr 1, artikel-id UNSP 87Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Observer-driven pattern recognition is the standard for interpretation of medical images. To achieve global parity in interpretation, semi-quantitative scoring systems have been developed based on observer assessments; these are widely used in scoring coronary artery disease, the arthritides and neurological conditions and for indicating the likelihood of malignancy. However, in an era of machine learning and artificial intelligence, it is increasingly desirable that we extract quantitative biomarkers from medical images that inform on disease detection, characterisation, monitoring and assessment of response to treatment. Quantitation has the potential to provide objective decision-support tools in the management pathway of patients. Despite this, the quantitative potential of imaging remains under-exploited because of variability of the measurement, lack of harmonised systems for data acquisition and analysis, and crucially, a paucity of evidence on how such quantitation potentially affects clinical decision-making and patient outcome. This article reviews the current evidence for the use of semi-quantitative and quantitative biomarkers in clinical settings at various stages of the disease pathway including diagnosis, staging and prognosis, as well as predicting and detecting treatment response. It critically appraises current practice and sets out recommendations for using imaging objectively to drive patient management decisions.

Ort, förlag, år, upplaga, sidor
SPRINGEROPEN , 2019. Vol. 10, nr 1, artikel-id UNSP 87
Nyckelord [en]
Imaging biomarkers; Clinical decision making; Quantitation; Standardisation
Nationell ämneskategori
Radiologi och bildbehandling
Identifikatorer
URN: urn:nbn:se:liu:diva-160416DOI: 10.1186/s13244-019-0764-0ISI: 000483541100001PubMedID: 31468205OAI: oai:DiVA.org:liu-160416DiVA, id: diva2:1353535
Tillgänglig från: 2019-09-23 Skapad: 2019-09-23 Senast uppdaterad: 2019-11-28

Open Access i DiVA

fulltext(1118 kB)14 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1118 kBChecksumma SHA-512
d8684829daf82918b6aedb18f5745f12195761611d65f9b1e97e65f4efe3e9e605247fa05c5c4b04a49c03aa80b62548d3f8e75c929f5ec093b38d48fa648308
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMed

Sök vidare i DiVA

Av författaren/redaktören
Persson, Anders
Av organisationen
Avdelningen för radiologiska vetenskaperMedicinska fakultetenRöntgenkliniken i LinköpingCentrum för medicinsk bildvetenskap och visualisering, CMIV
I samma tidskrift
Insight into Imaging
Radiologi och bildbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 14 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 24 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf