Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Using Convolutional Neural Networks to Detect People Around Wells in South Sudan
Linköpings universitet, Institutionen för systemteknik, Datorseende.
2019 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

The organization International Aid Services (IAS) provides people in East Africawith clean water through well drilling. The wells are located in surroundingsfar away for the investors to inspect and therefore IAS wishes to be able to monitortheir wells to get a better overview if different types of improvements needto be made. To see the load on different water sources at different times of theday and during the year, and to know how many people that are visiting thewells, is of particular interest. In this paper, a method is proposed for countingpeople around the wells. The goal is to choose a suitable method for detectinghumans in images and evaluate how it performs. The area of counting humansin images is not a new topic, though it needs to be taken into account that thesituation implies some restrictions. A Raspberry Pi with an associated camerais used, which is a small embedded system that cannot handle large and complexsoftware. There is also a limited amount of data in the project. The methodproposed in this project uses a pre-trained convolutional neural network basedobject detector called the Single Shot Detector, which is adapted to suit smallerdevices and applications. The pre-trained network that it is based on is calledMobileNet, a network that is developed to be used on smaller systems. To see howgood the chosen detector performs it will be compared with some other models.Among them a detector based on the Inception network, a significantly larger networkthan the MobileNet. The base network is modified by transfer learning.Results shows that a fine-tuned and modified network can achieve better result,from a F1-score of 0.49 for a non-fine-tuned model to 0.66 for the fine-tuned one.

Ort, förlag, år, upplaga, sidor
2019. , s. 59
Nyckelord [en]
Convolutional neural networks, Object detection, Transfer Learning, Image processing, Deep learning
Nationell ämneskategori
Elektroteknik och elektronik
Identifikatorer
URN: urn:nbn:se:liu:diva-160325ISRN: LiTH-ISY-EX--19/5200--SEOAI: oai:DiVA.org:liu-160325DiVA, id: diva2:1352472
Externt samarbete
Etteplan
Ämne / kurs
Elektroteknik
Handledare
Examinatorer
Tillgänglig från: 2019-09-23 Skapad: 2019-09-18 Senast uppdaterad: 2019-09-23Bibliografiskt granskad

Open Access i DiVA

fulltext(51587 kB)55 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 51587 kBChecksumma SHA-512
d4a93e0ac5de5993f54964dfc491622d31297786b3477a649a265c8270406f2ff65153e33a380915fa78ef9dfc1e42a65b8b7d6b1057887ef03014c9319ce9b2
Typ fulltextMimetyp application/pdf

Sök vidare i DiVA

Av författaren/redaktören
Kastberg, Maria
Av organisationen
Datorseende
Elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 55 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 46 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf