Digitala Vetenskapliga Arkivet

Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Evaluation of Target Tracking Using Multiple Sensors and Non-Causal Algorithms
Linköpings universitet, Institutionen för systemteknik, Reglerteknik.
Linköpings universitet, Institutionen för systemteknik, Reglerteknik.
2019 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

Today, the main research field for the automotive industry is to find solutions for active safety. In order to perceive the surrounding environment, tracking nearby traffic objects plays an important role. Validation of the tracking performance is often done in staged traffic scenarios, where additional sensors, mounted on the vehicles, are used to obtain their true positions and velocities. The difficulty of evaluating the tracking performance complicates its development.

An alternative approach studied in this thesis, is to record sequences and use non-causal algorithms, such as smoothing, instead of filtering to estimate the true target states. With this method, validation data for online, causal, target tracking algorithms can be obtained for all traffic scenarios without the need of extra sensors. We investigate how non-causal algorithms affects the target tracking performance using multiple sensors and dynamic models of different complexity. This is done to evaluate real-time methods against estimates obtained from non-causal filtering.

Two different measurement units, a monocular camera and a LIDAR sensor, and two dynamic models are evaluated and compared using both causal and non-causal methods. The system is tested in two single object scenarios where ground truth is available and in three multi object scenarios without ground truth.

Results from the two single object scenarios shows that tracking using only a monocular camera performs poorly since it is unable to measure the distance to objects. Here, a complementary LIDAR sensor improves the tracking performance significantly. The dynamic models are shown to have a small impact on the tracking performance, while the non-causal application gives a distinct improvement when tracking objects at large distances. Since the sequence can be reversed, the non-causal estimates are propagated from more certain states when the target is closer to the ego vehicle. For multiple object tracking, we find that correct associations between measurements and tracks are crucial for improving the tracking performance with non-causal algorithms.

Ort, förlag, år, upplaga, sidor
2019. , s. 83
Nyckelord [en]
evaluation, target tracking, multiple sensors, non-causal, smoother, smoothing, tracking, vehicle tracking, camera, lidar, estimate, estimation, prediction, vehicle dynamics, sensor fusion, real-time tracking, extended kalman filter, filter validation, validation, position estimation, velocity estimation, dynamic model, model complexity, multi object tracking, multiple object, tracking, single object tracking, data association, tracking fundamentals, iterated kalman filter, track management, gnn, global nearest neighbour, mahalanobis, mahalanobis distance, performance evaluation, differential gps, dgps, roi, ego, several sensors, sensors, rmse, root mean square error, invertible motion, anti-causal motion, anti-causal tracking, constant velocity, gnn, imu, tfs, two filter smoother, ekf, rts, radar, inertial measurement unit, nonlinear, nonlinear systems, mono camera, monocular camera, noise model, tracking performance, fixed interval smoothing, m/n logic, centralized fusion, non-causal object tracker, car tracking, car dynamics, automotive, active safety, object tracking, automotive industry, thesis, master, reverse dynamics, reverse tracking, reverse sequence, sequence tracking, data propagation, ground truth, estimating ground truth, additional sensors, mounted sensors, true estimates, environment, comparison, algorithm, independent targets, overlapping, measurements, occluded, track switch, improve, lower, uncertainty, more, certain, state, process, noise, covariance, sampling, image, sprt, adas, cnn, cv, pdf, track, target, ego, tracker, tentative track, observatiom, online tracking, offline tracking, online, offline, recorded, sequences, robust, self driving, self-driving, car, traffic, trajectory, true state, scenario, scenarios, future, accurate, output, advanced, driver, assistance, systems, non-linear, complex noise, pedestrian, truck, bus, maneuvering, vehicles, processed, measurement, frame, state, correction, probability, density, function, tuning, likelihood, transition, measurement, motion, model, recursion, gaussian, approximation, distribution, linear, jacobian, multiplicative, noise, ratio, ad, hoc, ad hoc, state, space, approach, backward, auction, euclidean, distance, statistical, threshold, gating, association, margin, normalize, covariance, matrix, fusion, confirmed, rejected, tentative, history, absolute, error, modular, ego motion, parameters, variables, logg, hardware, specification, fused, causal, factorization, independent, uncorrelated, transform, moving, rotation, translation, oncoming, overtaking
Nationell ämneskategori
Reglerteknik
Identifikatorer
URN: urn:nbn:se:liu:diva-160020ISRN: LiTH-ISY-EX--19/5256--SEOAI: oai:DiVA.org:liu-160020DiVA, id: diva2:1348051
Externt samarbete
Veoneer Sweden AB
Ämne / kurs
Examensarbete i Reglerteknik
Presentation
2019-08-30, Visionen, Linköping, 10:00 (Svenska)
Handledare
Examinatorer
Tillgänglig från: 2019-09-03 Skapad: 2019-09-03 Senast uppdaterad: 2019-09-03Bibliografiskt granskad

Open Access i DiVA

Evaluation_of_Target_Tracking_Using_Multiple_Sensors_and_Non-Causal_Algorithms(7146 kB)1894 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 7146 kBChecksumma SHA-512
856312bb1be917091aa0566aacb0d676e12629b896c7929332fe9864ecaba14cb070f1680a0495525a1326cc50f24862675f261dfa46825039c3e5d700091160
Typ fulltextMimetyp application/pdf

Av organisationen
Reglerteknik
Reglerteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 1910 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 2231 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf