Digitala Vetenskapliga Arkivet

Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Image Based Flow Path Recognition for Chromatography Equipment
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi.
2019 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 30 poäng / 45 hpStudentuppsats (Examensarbete)
Abstract [en]

The advancement in computer vision field with the help of deep learning methods is significant. The increase in computational resources, have lead researchers developing solutions that could help them in achieving high accuracy in image segmentation tasks. We performed segmentation of different types of objects in the chromatography instruments used in GE Healthcare, Uppsala. In this thesis project, we investigated methods in Computer vision and deep learning to segment out the different type of objects in instrument image. For a machine to automatically learn the features directly from instrument image, a deep convolutional neural network was implemented based on a recently developed existing architecture. The dataset was collected and preprocessed before using it with the neural network model. The model was trained with two different architecture Unet and Segnet developed for image segmentation. Both the used architecture is efficient and suitable for semantic segmentation tasks. Among different components to segment out in the instrument, there was a thin pipe. Unet was able to achieve good results while segmenting thin pipes with fewer data as well. Results show that Unet can act as a suitable architecture for segmenting different objects in an instrument even if we have only 100 images. Further advances can be done to improve the performance of the model by generating a better mask of the model and finding a way to collect more data for training the model.

Ort, förlag, år, upplaga, sidor
2019. , s. 82
Serie
IT ; 19017
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
URN: urn:nbn:se:uu:diva-392105OAI: oai:DiVA.org:uu-392105DiVA, id: diva2:1346922
Utbildningsprogram
Masterprogram i datavetenskap
Handledare
Examinatorer
Tillgänglig från: 2019-08-29 Skapad: 2019-08-29 Senast uppdaterad: 2019-08-29Bibliografiskt granskad

Open Access i DiVA

fulltext(30106 kB)864 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 30106 kBChecksumma SHA-512
947d431b789ffee9dccb84dda301e064a88db6021b188d406cf40d0c1146069dddd71d36a4349803ac316903445768ff72e93d6557b2302a9c3c320e85336b7a
Typ fulltextMimetyp application/pdf

Av organisationen
Institutionen för informationsteknologi
Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 866 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 453 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf