Digitala Vetenskapliga Arkivet

Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Predicting the unpredictable - Can Artificial Neural Network replace ARIMA for prediction of the Swedish Stock Market (OMXS30)?
Mittuniversitetet, Fakulteten för humanvetenskap, Institutionen för ekonomi, geografi, juridik och turism.
2019 (Engelska)Självständigt arbete på grundnivå (kandidatexamen), 10 poäng / 15 hpStudentuppsats (Examensarbete)
Abstract [en]

During several decades the stock market has been an area of interest forresearchers due to its complexity, noise, uncertainty and nonlinearity of thedata. Most of the studies regarding this area use a classical stochastics method,an example of this is ARIMA which is a standard approach for time seriesprediction. There is however another method for prediction of the stock marketthat is gaining traction in the recent years; Artificial Neural Network (ANN).This method has mostly been used in research on the American and Asian stockmarkets so far. Therefore, the purpose of this essay was to explore if ArtificialNeural Network could be used instead of ARIMA to predict the Swedish stockmarket (OMXS30). The study used data from the Swedish Stock Marketbetween 1991-07-09 to 2018-12-28 for the training of the ARIMA model anda forecast data that ranged between 2019-01-02 to 2019-04-26. The forecastdata of the ANN was composed of 80% of the data between 1991-07-09 to2019-04-26 and the evaluation data was composed of the remaining 20%. TheANN architecture had one input layer with chunks of 20 consecutive days asinput, followed by three Long Short-Term Memory (LSTM) hidden layers with128 neurons in each layer, followed by another hidden layer with RectifiedLinear Unit (ReLU) containing 32 neurons, followed by the output layercontaining 2 neurons with softmax activation. The results showed that theANN, with an accuracy of 0,9892, could be a successful method to forecast theSwedish stock market instead of ARIMA.

Ort, förlag, år, upplaga, sidor
2019. , s. 45
Nyckelord [en]
Artificial Neural Network, ARIMA, LSTM, stock market
Nationell ämneskategori
Företagsekonomi
Identifikatorer
URN: urn:nbn:se:miun:diva-36908OAI: oai:DiVA.org:miun-36908DiVA, id: diva2:1344390
Ämne / kurs
Företagsekonomi FE1
Handledare
Examinatorer
Tillgänglig från: 2019-08-20 Skapad: 2019-08-20 Senast uppdaterad: 2019-08-20Bibliografiskt granskad

Open Access i DiVA

fulltext(964 kB)281 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 964 kBChecksumma SHA-512
b65c6ec84b1bcbdf8065aa55e0addb3d84f3076491f5828ce17f8cfffdfcb38fd536eb9effcb7ce8f21e3e135a6872f79dd45b41ccb390a7de2e11211ef84c43
Typ fulltextMimetyp application/pdf

Av organisationen
Institutionen för ekonomi, geografi, juridik och turism
Företagsekonomi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 281 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 570 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf