Digitala Vetenskapliga Arkivet

Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Image enhancement effect on the performance of convolutional neural networks
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datavetenskap.
2019 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

Context. Image enhancement algorithms can be used to enhance the visual effects of images in the field of human vision. So can image enhancement algorithms be used in the field of computer vision? The convolutional neural network, as the most powerful image classifier at present, has excellent performance in the field of image recognition. This paper explores whether image enhancement algorithms can be used to improve the performance of convolutional neural networks.

Objectives. The purpose of this paper is to explore the effect of image enhancement algorithms on the performance of CNN models in deep learning and transfer learning, respectively. The article selected five different image enhancement algorithms, they are the contrast limited adaptive histogram equalization (CLAHE), the successive means of the quantization transform (SMQT), the adaptive gamma correction, the wavelet transform, and the Laplace operator.

Methods. In this paper, experiments are used as research methods. Three groups of experiments are designed; they respectively explore whether the enhancement of grayscale images can improve the performance of CNN in deep learning, whether the enhancement of color images can improve the performance of CNN in deep learning and whether the enhancement of RGB images can improve the performance of CNN in transfer learning?Results. In the experiment, in deep learning, when training a complete CNN model, using the Laplace operator to enhance the gray image can improve the recall rate of CNN. However, the remaining image enhancement algorithms cannot improve the performance of CNN in both grayscale image datasets and color image datasets. In addition, in transfer learning, when fine-tuning the pre-trained CNN model, using contrast limited adaptive histogram equalization (CLAHE), successive means quantization transform (SMQT), Wavelet transform, and Laplace operator will reduce the performance of CNN.

Conclusions. Experiments show that in deep learning, using image enhancement algorithms may improve CNN performance when training complete CNN models, but not all image enhancement algorithms can improve CNN performance; in transfer learning, when fine-tuning the pre- trained CNN model, image enhancement algorithms may reduce the performance of CNN.

Ort, förlag, år, upplaga, sidor
2019. , s. 40
Nyckelord [en]
Image Enhancement, Convolutional Neural Networks, Deep Learning, Transfer Learning
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:bth-18523OAI: oai:DiVA.org:bth-18523DiVA, id: diva2:1341096
Ämne / kurs
DV2572 Masterarbete i Datavetenskap
Utbildningsprogram
DVACS Masterprogram i Datavetenskap
Handledare
Examinatorer
Tillgänglig från: 2019-08-12 Skapad: 2019-08-07 Senast uppdaterad: 2019-08-12Bibliografiskt granskad

Open Access i DiVA

Image enhancement effect on the performance of convolutional neural networks(1648 kB)10930 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 1648 kBChecksumma SHA-512
a8839c256e2733621df081b9f2c6324e22a7f73dae78fd892b378c2b866f91ba3697a304a78039812e89286913cb5b9d747fac41047e6660fd2385f94a5fdaf4
Typ fulltextMimetyp application/pdf

Av organisationen
Institutionen för datavetenskap
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 10930 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 3676 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf