Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Synthesis of Thoracic Computer Tomography Images using Generative Adversarial Networks
Linköpings universitet, Institutionen för medicinsk teknik, Avdelningen för medicinsk teknik.
2019 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

The use of machine learning algorithms to enhance and facilitate medical diagnosis and analysis is a promising and an important area, which could improve the workload of clinicians’ substantially. In order for machine learning algorithms to learn a certain task, large amount of data needs to be available. Data sets for medical image analysis are rarely public due to restrictions concerning the sharing of patient data. The production of synthetic images could act as an anonymization tool to enable the distribution of medical images and facilitate the training of machine learning algorithms, which could be used in practice.

This thesis investigates the use of Generative Adversarial Networks (GAN) for synthesis of new thoracic computer tomography (CT) images, with no connection to real patients. It also examines the usefulness of the images by comparing the quantitative performance of a segmentation network trained with the synthetic images with the quantitative performance of the same segmentation network trained with real thoracic CT images. The synthetic thoracic CT images were generated using CycleGAN for image-to-image translation between label map ground truth images and thoracic CT images. The synthetic images were evaluated using different set-ups of synthetic and real images for training the segmentation network. All set-ups were evaluated according to sensitivity, accuracy, Dice and F2-score and compared to the same parameters evaluated from a segmentation network trained with 344 real images.

The thesis shows that it was possible to generate synthetic thoracic CT images using GAN. However, it was not possible to achieve an equal quantitative performance of a segmentation network trained with synthetic data compared to a segmentation network trained with the same amount of real images in the scope of this thesis. It was possible to achieve equal quantitative performance of a segmentation network, as a segmentation network trained on real images, by training it with a combination of real and synthetic images, where a majority of the images were synthetic images and a minority were real images. By using a combination of 59 real images and 590 synthetic images, equal performance as a segmentation network trained with 344 real images was achieved regarding sensitivity, Dice and F2-score.

Equal quantitative performance of a segmentation network could thus be achieved by using fewer real images together with an abundance of synthetic images, created at close to no cost, indicating a usefulness of synthetically generated images.

Ort, förlag, år, upplaga, sidor
2019. , s. 90
Nyckelord [en]
Generative Adversarial Networks, deep learning, image synthesis, synthetic images, image segmentation
Nationell ämneskategori
Medicinteknik
Identifikatorer
URN: urn:nbn:se:liu:diva-158280ISRN: LIU-IMT-TFK-A--19/566--SEOAI: oai:DiVA.org:liu-158280DiVA, id: diva2:1332324
Externt samarbete
Combitech AB
Ämne / kurs
Medicinsk teknik
Presentation
2019-06-04, IMT 1, Campus US, Linköping, 09:55
Handledare
Examinatorer
Tillgänglig från: 2019-06-28 Skapad: 2019-06-28 Senast uppdaterad: 2019-06-28Bibliografiskt granskad

Open Access i DiVA

fulltext(4203 kB)47 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 4203 kBChecksumma SHA-512
b69cb5fd89c7c0a56add5f6f0e50a345bdf26cd13c10fa89c9b1f4bff57715e48c7322dbb09bf3267ba1df462f972455ed15af72968bb65aaa5e7dfdefd59f39
Typ fulltextMimetyp application/pdf

Sök vidare i DiVA

Av författaren/redaktören
Hagvall Hörnstedt, Julia
Av organisationen
Avdelningen för medicinsk teknik
Medicinteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 47 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 125 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf