Digitala Vetenskapliga Arkivet

Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
NON-CONTACT BASED PERSON’S SLEEPINESS DETECTION USING HEART RATE VARIABILITY
Mälardalens högskola, Akademin för innovation, design och teknik.
2019 (Engelska)Självständigt arbete på grundnivå (kandidatexamen), 10 poäng / 15 hpStudentuppsats (Examensarbete)
Abstract [en]

Today many strategies of monitoring health status and well-being are done through measurementmethods that are connected to the body, e.g. sensors or electrodes. These are often complicatedand requires personal assistance in order to use, because of advanced hardware and attachmentissues. This paper proposes a new method of making it possible for a user to self-monitoring theirwell-being and health status over time by using a non-contact camera system. The camera systemextracts physiological parameters (e.g. Heart Rate (HR), Respiration Rate (RR), Inter-bit-Interval(IBI)) based on facial color variations, due to blood circulation in facial skin. By examining anindividual’s physiological parameters, one can extract measurements that can be used in order tomonitor their well-being. The measurements used in this paper is features of heart rate variability(HRV) that are calculated from the physiological parameter IBI. The HRV features included andtested in this paper is SDNN, RMSSD, NN50 and pNN50 from Time Domain and VLF, LF andLF/HF from Frequency Domain. Machine Learning classification is done in order to classifyan individual’s sleepiness from the given features. The Machine Learning classification modelwhich gave the best results, in forms of accuracy, were Support Vector Machines (SVM). The bestmean accuracy achieved was 84,16% for the training set and 81,67% for the test set for sleepinessdetection with SVM. This paper has great potential for personal health care monitoring and can befurther extended to detect other factors that could help a user to monitor their well-being, such asmeasuring stress level

Ort, förlag, år, upplaga, sidor
2019. , s. 37
Nyckelord [en]
sleepiness, machine learning, heart rate variability
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:mdh:diva-44620OAI: oai:DiVA.org:mdh-44620DiVA, id: diva2:1330610
Ämne / kurs
Datavetenskap
Handledare
Examinatorer
Tillgänglig från: 2019-09-18 Skapad: 2019-06-25 Senast uppdaterad: 2019-09-18Bibliografiskt granskad

Open Access i DiVA

fulltext(3080 kB)343 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 3080 kBChecksumma SHA-512
b05a92777ccac8c7d9c5eb40304c051a16ce589169007b0f9722e00ab9b8c91c9396f4fde70f6ce64c11bb71d24b19a77040c0a9bda915ec7912044371fa0d67
Typ fulltextMimetyp application/pdf

Av organisationen
Akademin för innovation, design och teknik
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 348 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 623 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf