Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Improving 3D Point Cloud Segmentation Using Multimodal Fusion of Projected 2D Imagery Data: Improving 3D Point Cloud Segmentation Using Multimodal Fusion of Projected 2D Imagery Data
Linköpings universitet, Institutionen för systemteknik, Datorseende.
2019 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

Semantic segmentation is a key approach to comprehensive image data analysis. It can be applied to analyze 2D images, videos, and even point clouds that contain 3D data points. On the first two problems, CNNs have achieved remarkable progress, but on point cloud segmentation, the results are less satisfactory due to challenges such as limited memory resource and difficulties in 3D point annotation. One of the research studies carried out by the Computer Vision Lab at Linköping University was aiming to ease the semantic segmentation of 3D point cloud. The idea is that by first projecting 3D data points to 2D space and then focusing only on the analysis of 2D images, we can reduce the overall workload for the segmentation process as well as exploit the existing well-developed 2D semantic segmentation techniques. In order to improve the performance of CNNs for 2D semantic segmentation, the study has used input data derived from different modalities. However, how different modalities can be optimally fused is still an open question. Based on the above-mentioned study, this thesis aims to improve the multistream framework architecture. More concretely, we investigate how different singlestream architectures impact the multistream framework with a given fusion method, and how different fusion methods contribute to the overall performance of a given multistream framework. As a result, our proposed fusion architecture outperformed all the investigated traditional fusion methods. Along with the best singlestream candidate and few additional training techniques, our final proposed multistream framework obtained a relative gain of 7.3\% mIoU compared to the baseline on the semantic3D point cloud test set, increasing the ranking from 12th to 5th position on the benchmark leaderboard.

Ort, förlag, år, upplaga, sidor
2019. , s. 70
Nyckelord [en]
deep learning, multimodal fusion, multimodality, semantic segmentation, point cloud segmentation
Nationell ämneskategori
Datorseende och robotik (autonoma system)
Identifikatorer
URN: urn:nbn:se:liu:diva-157705ISRN: LiTH-ISY-EX--19/5190--SEOAI: oai:DiVA.org:liu-157705DiVA, id: diva2:1327473
Ämne / kurs
Examensarbete i Datorteknik
Presentation
2019-02-28, Linköping, 13:00 (Engelska)
Handledare
Examinatorer
Tillgänglig från: 2019-06-19 Skapad: 2019-06-19 Senast uppdaterad: 2019-06-19Bibliografiskt granskad

Open Access i DiVA

fulltext(10484 kB)72 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 10484 kBChecksumma SHA-512
3965175ce2113914acf5dbd20ce7f9e64174e613f35e1c963e221f980929bdd7f4eebcad3f10901aee5e46409d670fdd34b270f5027e2f90076d6c85089c53ec
Typ fulltextMimetyp application/pdf

Sök vidare i DiVA

Av författaren/redaktören
He, Linbo
Av organisationen
Datorseende
Datorseende och robotik (autonoma system)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 72 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 207 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf