Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Classifying RGB Images with multi-colour Persistent Homology
Linköpings universitet, Matematiska institutionen.
2019 (Engelska)Självständigt arbete på grundnivå (kandidatexamen), 10,5 poäng / 16 hpStudentuppsats (Examensarbete)
Abstract [en]

In Image Classification, pictures of the same type of object can have very different pixel values. Traditional norm-based metrics therefore fail to identify objectsin the same category. Topology is a branch of mathematics that deals with homeomorphic spaces, by discarding length. With topology, we can discover patterns in the image that are invariant to rotation, translation and warping.

Persistent Homology is a new approach in Applied Topology that studies the presence of continuous regions and holes in an image. It has been used successfully for image segmentation and classification [12]. However, current approaches in image classification require a grayscale image to generate the persistence modules. This means information encoded in colour channels is lost.

This thesis investigates whether the information in the red, green and blue colour channels of an RGB image hold additional information that could help algorithms classify pictures. We apply two recent methods, one by Adams [2] and the other by Hofer [25], on the CUB-200-2011 birds dataset [40] andfind that Hofer’s method produces significant results. Additionally, a modified method based on Hofer that uses the RGB colour channels produces significantly better results than the baseline, with over 48 % of images correctly classified, compared to 44 % and with a more significant improvement at lower resolutions.This indicates that colour channels do provide significant new information and generating one persistence module per colour channel is a viable approach to RGB image classification.

Ort, förlag, år, upplaga, sidor
2019. , s. 99
Nyckelord [en]
Persistent Homology, Applied Algebraic Topology, Topological Data Analysis, Image Classification, CUB-200-2011
Nationell ämneskategori
Matematik
Identifikatorer
URN: urn:nbn:se:liu:diva-157641ISRN: LiTH-MAT-EX--2019/01--SEOAI: oai:DiVA.org:liu-157641DiVA, id: diva2:1326229
Ämne / kurs
Matematik
Presentation
2019-06-13, Hopningspunkten, B Building, Linköping University, 581 83 LINKÖPING, 09:00 (Engelska)
Handledare
Examinatorer
Tillgänglig från: 2019-06-19 Skapad: 2019-06-17 Senast uppdaterad: 2019-06-19Bibliografiskt granskad

Open Access i DiVA

fulltext(822 kB)55 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 822 kBChecksumma SHA-512
ce2dbbd40346079a0c89f6161aee45632ef734c97d65ce0694dcc62f16157851d71d006f9851fcd3a7031a50c63ff1c2e11b259f0054334acd44a16a4d084dd2
Typ fulltextMimetyp application/pdf

Sök vidare i DiVA

Av författaren/redaktören
Byttner, Wolf
Av organisationen
Matematiska institutionen
Matematik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 55 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 564 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf