Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Conservative and stable degree preserving SBP operators for non-conforming meshes
Mathematical Institute, University of Cologne, Cologne, Germany.
Institute for Aerospace Studies, University of Toronto, Toronto, Canada.
Mathematical Institute, University of Cologne, Cologne, Germany.ORCID-id: 0000-0002-5902-1522
Mathematical Institute, University of Cologne, Cologne, Germany.
Visa övriga samt affilieringar
2018 (Engelska)Ingår i: Journal of Scientific Computing, ISSN 0885-7474, E-ISSN 1573-7691, Vol. 75, nr 2, s. 657-686Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Non-conforming numerical approximations offer increased flexibility for applications that require high resolution in a localized area of the computational domain or near complex geometries. Two key properties for non-conforming methods to be applicable to real world applications are conservation and energy stability. The summation-by-parts (SBP) property, which certain finite-difference and discontinuous Galerkin methods have, finds success for the numerical approximation of hyperbolic conservation laws, because the proofs of energy stability and conservation can discretely mimic the continuous analysis of partial differential equations. In addition, SBP methods can be developed with high-order accuracy, which is useful for simulations that contain multiple spatial and temporal scales. However, existing non-conforming SBP schemes result in a reduction of the overall degree of the scheme, which leads to a reduction in the order of the solution error. This loss of degree is due to the particular interface coupling through a simultaneous-approximation-term (SAT). We present in this work a novel class of SBP-SAT operators that maintain conservation, energy stability, and have no loss of the degree of the scheme for non-conforming approximations. The new degree preserving discretizations require an ansatz that the norm matrix of the SBP operator is of a degree ≥ 2p, in contrast to, for example, existing finite difference SBP operators, where the norm matrix is 2p − 1 accurate. We demonstrate the fundamental properties of the new scheme with rigorous mathematical analysis as well as numerical verification.

Ort, förlag, år, upplaga, sidor
Springer-Verlag New York, 2018. Vol. 75, nr 2, s. 657-686
Nyckelord [en]
First derivative, Summation-by-parts, Simultaneous-approximation-term, Conservation, Energy stability, Finite difference methods, Non-conforming methods, Intermediate grids
Nationell ämneskategori
Beräkningsmatematik
Identifikatorer
URN: urn:nbn:se:liu:diva-156858DOI: 10.1007/s10915-017-0563-zISI: 000428565100004Scopus ID: 2-s2.0-85030107035OAI: oai:DiVA.org:liu-156858DiVA, id: diva2:1315785
Forskningsfinansiär
Deutsche Forschungsgemeinschaft (DFG), TA 2160/1-1Tillgänglig från: 2019-05-14 Skapad: 2019-05-14 Senast uppdaterad: 2019-05-24Bibliografiskt granskad

Open Access i DiVA

Conservative and stable degree preserving SBP operators for non-conforming meshes(1413 kB)26 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1413 kBChecksumma SHA-512
35fbdf27753f8b0fb1184cedccf16b044366301a3e9fa8d309195ec6ae6b7535349fc237ecf475ee34ecb83dce532d662c15c498970ef6cdba9143cf6110b244
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Sök vidare i DiVA

Av författaren/redaktören
Winters, Andrew Ross
I samma tidskrift
Journal of Scientific Computing
Beräkningsmatematik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 26 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 58 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf