Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Control of Residential Battery Charge Scheduling using Machine Learning
KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
2018 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

This thesis proposes the use of a Reinforcement Learning (RL) agent to control the charge scheduling of a residential battery system. The system consists of a house located in Sweden equipped with a photo-voltaic array and grid-connection. Real residential load data is used while the PV output is simulated. The RL agent is trained using the Proximal Policy Optimization (PPO) algorithm to charge and discharge the battery within a continuous action space. The agent is trained and tested on three price contracts: fixed, monthly, and hourly. The perfor-mance of the agent is compared to a system without the battery, and to a Mixed Integer Linear Programming (MILP) optimizer controlling the battery. Results showed that while it was possible to train the agent to control the charge scheduling of the battery, the economic perfor-mance was only marginally better than a battery-less system and much poorer than MILP control. Of the price contracts, the agent had rela-tively better performance on the fixed price contract. The sensitivity of the RL algorithm to parameters and the reward function suggests that further investigation is needed in order to draw firm conclusions on the suitability of this method to the task in question.

Ort, förlag, år, upplaga, sidor
2018. , s. 61
Serie
TRITA-ITM-EX 2019 ; 3
Nationell ämneskategori
Maskinteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-244988OAI: oai:DiVA.org:kth-244988DiVA, id: diva2:1293384
Handledare
Examinatorer
Tillgänglig från: 2019-03-04 Skapad: 2019-03-04 Senast uppdaterad: 2019-03-04Bibliografiskt granskad

Open Access i DiVA

fulltext(1773 kB)163 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1773 kBChecksumma SHA-512
b8f3029d83c27ce69a249793744a552ab3c3aa98903b79d3600572d29a2bd6c5d1212327529f6d1e8b5478ebe1b31cb88b10f1d9686972572377b28d3ef2d61a
Typ fulltextMimetyp application/pdf

Av organisationen
Energiteknik
Maskinteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 163 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 210 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf