Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Relevance feedback-based optimization of search queries for Patents
Linköpings universitet, Institutionen för datavetenskap, Interaktiva och kognitiva system.
2019 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 40 poäng / 60 hpStudentuppsats (Examensarbete)
Abstract [en]

In this project, we design a search query optimization system based on the user’s relevance feedback by generating customized query strings for existing patent alerts. Firstly, the Rocchio algorithm is used to generate a search string by analyzing the characteristics of related patents and unrelated patents. Then the collaborative filtering recommendation algorithm is used to rank the query results, which considering the previous relevance feedback and patent features, instead of only considering the similarity between query and patents as the traditional method.

In order to further explore the performance of the optimization system, we design and conduct a series of evaluation experiments regarding TF-IDF as a baseline method. Experiments show that, with the use of generated search strings, the proportion of unrelated patents in search results is significantly reduced over time. In 4 months, the precision of the retrieved results is optimized from 53.5% to 72%. What’s more, the rank performance of the method we proposed is better than the baseline method. In terms of precision, top10 of recommendation algorithm is about 5 percentage points higher than the baseline method, and top20 is about 7.5% higher. It can be concluded that the approach we proposed can effectively optimize patent search results by learning relevance feedback.

Ort, förlag, år, upplaga, sidor
2019. , s. 65
Nyckelord [en]
Patent Search, Query Reformulation, Recommendation System, Matrix Decomposition, Text Processing
Nationell ämneskategori
Datorsystem
Identifikatorer
URN: urn:nbn:se:liu:diva-154173ISRN: LIU-IDA/LITH-EX-A--19/007--SEOAI: oai:DiVA.org:liu-154173DiVA, id: diva2:1284224
Ämne / kurs
Datateknik
Presentation
2018-09-20, Charlie, D-building, Linköping University, Linköping, 09:25 (Engelska)
Handledare
Examinatorer
Tillgänglig från: 2019-01-31 Skapad: 2019-01-31 Senast uppdaterad: 2019-02-01Bibliografiskt granskad

Open Access i DiVA

fulltext(1090 kB)85 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1090 kBChecksumma SHA-512
fcfa769ebdef573c8cf9ace3e507fe015ae1c82e3e0059edc51a4298e65fdecb02343734a9e5fe902bca1b96a288a587b715faa25db4b6962313462aac85abb6
Typ fulltextMimetyp application/pdf

Sök vidare i DiVA

Av författaren/redaktören
Cheng, Sijin
Av organisationen
Interaktiva och kognitiva system
Datorsystem

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 85 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 198 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf