Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Analysis of Model Mismatch Effects for a Model-based Gas Source Localization Strategy Incorporating Advection Knowledge
German Aerospace Center, Oberpfaffenhofen, Germany. (AASS MRO Lab)
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: 0000-0003-0217-9326
German Aerospace Center, Oberpfaffenhofen, Germany.ORCID-id: 0000-0002-6065-6453
2019 (Engelska)Ingår i: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 19, nr 3, artikel-id 520Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In disaster scenarios, where toxic material is leaking, gas source localization is a common but also dangerous task. To reduce threats for human operators, we propose an intelligent sampling strategy that enables a multi-robot system to autonomously localize unknown gas sources based on gas concentration measurements. This paper discusses a probabilistic, model-based approach for incorporating physical process knowledge into the sampling strategy. We model the spatial and temporal dynamics of the gas dispersion with a partial differential equation that accounts for diffusion and advection effects. We consider the exact number of sources as unknown, but assume that gas sources are sparsely distributed. To incorporate the sparsity assumption we make use of sparse Bayesian learning techniques. Probabilistic modeling can account for possible model mismatch effects that otherwise can undermine the performance of deterministic methods. In the paper we evaluate the proposed gas source localization strategy in simulations using synthetic data. Compared to real-world experiments, a simulated environment provides us with ground truth data and reproducibility necessary to get a deeper insight into the proposed strategy. The investigation shows that (i) the probabilistic model can compensate imperfect modeling; (ii) the sparsity assumption significantly accelerates the source localization; and (iii) a-priori advection knowledge is of advantage for source localization, however, it is only required to have a certain level of accuracy. These findings will help in the future to parameterize the proposed algorithm in real world applications.

Ort, förlag, år, upplaga, sidor
Basel, Switzerland: MDPI, 2019. Vol. 19, nr 3, artikel-id 520
Nyckelord [en]
Robotic exploration, gas source localization, mobile robot olfaction, sparse Bayesian learning, multi-agent system, advection-diffusion model
Nationell ämneskategori
Robotteknik och automation
Forskningsämne
Datavetenskap
Identifikatorer
URN: urn:nbn:se:oru:diva-71964DOI: 10.3390/s19030520ISI: 000459941200083PubMedID: 30691174Scopus ID: 2-s2.0-85060572534OAI: oai:DiVA.org:oru-71964DiVA, id: diva2:1284133
Projekt
SmokeBot (EC H2020, 645101)
Anmärkning

Funding Agencies:

European Commission  645101 

Valles Marineris Explorer initiative of DLR (German Aerospace Center) Space Administration 

Tillgänglig från: 2019-01-31 Skapad: 2019-01-31 Senast uppdaterad: 2020-02-07Bibliografiskt granskad

Open Access i DiVA

Analysis of Model Mismatch Effects for a Model-based Gas Source Localization Strategy Incorporating Advection Knowledge(1497 kB)94 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1497 kBChecksumma SHA-512
613bbf630336b45bf84479043e953b7d0fbdbb1094b8157024bf1426ba2ee43b579d1614ab396c52da2eeec730329a6932cf7b4c2a50ed9f34df5cc964576ae0
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Sök vidare i DiVA

Av författaren/redaktören
Wiedemann, ThomasLilienthal, Achim J.Shutin, Dmitriy
Av organisationen
Institutionen för naturvetenskap och teknik
I samma tidskrift
Sensors
Robotteknik och automation

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 94 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 268 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf