Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Integration of magnetic resonance imaging and protein and metabolite CSF measurements to enable early diagnosis of secondary progressive multiple sclerosis.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinska vetenskaper, Klinisk kemi. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinska vetenskaper, Klinisk kemi.ORCID-id: 0000-0002-4137-5517
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurologi.ORCID-id: 0000-0002-0580-8821
Visa övriga samt affilieringar
2018 (Engelska)Ingår i: Theranostics, ISSN 1838-7640, E-ISSN 1838-7640, Vol. 8, nr 16, s. 4477-4490Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Molecular networks in neurological diseases are complex. Despite this fact, contemporary biomarkers are in most cases interpreted in isolation, leading to a significant loss of information and power. We present an analytical approach to scrutinize and combine information from biomarkers originating from multiple sources with the aim of discovering a condensed set of biomarkers that in combination could distinguish the progressive degenerative phenotype of multiple sclerosis (SPMS) from the relapsing-remitting phenotype (RRMS).

Methods: Clinical and magnetic resonance imaging (MRI) data were integrated with data from protein and metabolite measurements of cerebrospinal fluid, and a method was developed to sift through all the variables to establish a small set of highly informative measurements. This prospective study included 16 SPMS patients, 30 RRMS patients and 10 controls. Protein concentrations were quantitated with multiplexed fluorescent bead-based immunoassays and ELISA. The metabolome was recorded using liquid chromatography-mass spectrometry. Clinical follow-up data of the SPMS patients were used to assess disease progression and development of disability.

Results: Eleven variables were in combination able to distinguish SPMS from RRMS patients with high confidence superior to any single measurement. The identified variables consisted of three MRI variables: the size of the spinal cord and the third ventricle and the total number of T1 hypointense lesions; six proteins: galectin-9, monocyte chemoattractant protein-1 (MCP-1), transforming growth factor alpha (TGF-α), tumor necrosis factor alpha (TNF-α), soluble CD40L (sCD40L) and platelet-derived growth factor AA (PDGF-AA); and two metabolites: 20β-dihydrocortisol (20β-DHF) and indolepyruvate. The proteins myelin basic protein (MBP) and macrophage-derived chemokine (MDC), as well as the metabolites 20β-DHF and 5,6-dihydroxyprostaglandin F1a (5,6-DH-PGF1), were identified as potential biomarkers of disability progression.

Conclusion: Our study demonstrates, in a limited but well-defined and data-rich cohort, the importance and value of combining multiple biomarkers to aid diagnostics and track disease progression.

Ort, förlag, år, upplaga, sidor
2018. Vol. 8, nr 16, s. 4477-4490
Nyckelord [en]
biomarker, data integration, disease progression, metabolomics, multiple sclerosis
Nationell ämneskategori
Neurologi
Identifikatorer
URN: urn:nbn:se:uu:diva-363387DOI: 10.7150/thno.26249ISI: 000444104300014PubMedID: 30214633OAI: oai:DiVA.org:uu-363387DiVA, id: diva2:1256713
Forskningsfinansiär
Åke Wibergs StiftelseEU, Horisont 2020, 654241Tillgänglig från: 2018-10-17 Skapad: 2018-10-17 Senast uppdaterad: 2019-04-29Bibliografiskt granskad

Open Access i DiVA

fulltext(1435 kB)33 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1435 kBChecksumma SHA-512
a78c5e7963687eb04f193fba53c023077844d3ce7c763ae82e3cd11a1f2318c1eb1ba1174468826f081f958b95f1d72e8b2b11d00d2189e8987bc25156bbe849
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMed

Sök vidare i DiVA

Av författaren/redaktören
Herman, StephanieEmami Khoonsari, PayamTolf, AndreasÅkerfeldt, TorbjörnLarsson, AndersSpjuth, OlaBurman, JoachimKultima, Kim
Av organisationen
Klinisk kemiInstitutionen för farmaceutisk biovetenskapNeurologi
I samma tidskrift
Theranostics
Neurologi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 33 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 100 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf