Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Identication of a Class of Nonlinear Dynamical Networks
KTH, Skolan för elektro- och systemteknik (EES), Reglerteknik. KTH, Skolan för elektro- och systemteknik (EES), Centra, ACCESS Linnaeus Centre.ORCID-id: 0000-0001-5474-7060
KTH, Skolan för elektro- och systemteknik (EES), Reglerteknik. KTH, Skolan för elektro- och systemteknik (EES), Centra, ACCESS Linnaeus Centre.ORCID-id: 0000-0003-0355-2663
KTH, Skolan för elektro- och systemteknik (EES), Reglerteknik. KTH, Skolan för elektro- och systemteknik (EES), Centra, ACCESS Linnaeus Centre.ORCID-id: 0000-0002-9368-3079
2018 (Engelska)Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Identifcation of dynamic networks has attracted considerable interest recently. So far the main focus has been on linear time-invariant networks. Meanwhile, most real-life systems exhibit nonlinear behaviors; consider, for example, two stochastic linear time-invariant systems connected in series, each of which has a nonlinearity at its output. The estimation problem in this case is recognized to be challenging, due to the analytical intractability of both the likelihood function and the optimal one-step ahead predictors of the measured nodes. In this contribution, we introduce a relatively simple prediction error method that may be used for the estimation of nonlinear dynamical networks. The estimator is defined using a deterministic predictor that is nonlinear in the known signals. The estimation problem can be defined using closed-form analytical expressions in several non-trivial cases, and Monte Carlo approximations are not necessarily required. We show, that this is the case for some block-oriented networks with no feedback loops and where all the nonlinear modules are polynomials. Consequently, the proposed method can be applied in situations considered challenging by current approaches. The performance of the estimation method is illustrated on a numerical simulation example.

Ort, förlag, år, upplaga, sidor
2018.
Serie
IFAC-PapersOnLine
Nyckelord [en]
System Identication, Dynamical Networks, Stochastic Systems, Block-Oriented Models, Prediction Error Method.
Nationell ämneskategori
Signalbehandling Reglerteknik
Forskningsämne
Elektro- och systemteknik; Elektro- och systemteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-233639OAI: oai:DiVA.org:kth-233639DiVA, id: diva2:1242285
Konferens
18th IFAC Symposium on System Identification
Forskningsfinansiär
EU, Europeiska forskningsrådet, 267381Vetenskapsrådet, 2015-05285Vetenskapsrådet, 2016-06079
Anmärkning

QC 20180829

Tillgänglig från: 2018-08-27 Skapad: 2018-08-27 Senast uppdaterad: 2018-08-29Bibliografiskt granskad

Open Access i DiVA

0131.pdf(470 kB)115 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 470 kBChecksumma SHA-512
0eaa3461b6e9df88722c4e71f87cdefa9fa7e79fb055ebaf257af1ed00a26f228490465c4310a557886a907f8c95fc0751c307e703bb78625e0227e95426b290
Typ fulltextMimetyp application/pdf

Sök vidare i DiVA

Av författaren/redaktören
Abdalmoaty, Mohamed R.Rojas, Cristian R.Hjalmarsson, Håkan
Av organisationen
ReglerteknikACCESS Linnaeus Centre
SignalbehandlingReglerteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 115 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 1624 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf