Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Data Consistency Approach to Model Validation
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för systemteknik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Reglerteknik.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för systemteknik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Reglerteknik.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Reglerteknik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för systemteknik.ORCID-id: 0000-0002-7957-3711
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Reglerteknik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för systemteknik.
(Engelska)Ingår i: Artikel i tidskrift (Refereegranskat) Submitted
Nationell ämneskategori
Sannolikhetsteori och statistik
Identifikatorer
URN: urn:nbn:se:uu:diva-357607OAI: oai:DiVA.org:uu-357607DiVA, id: diva2:1239823
Forskningsfinansiär
Stiftelsen för strategisk forskning (SSF)VetenskapsrådetTillgänglig från: 2018-08-17 Skapad: 2018-08-17 Senast uppdaterad: 2018-10-01
Ingår i avhandling
1. Machine learning with state-space models, Gaussian processes and Monte Carlo methods
Öppna denna publikation i ny flik eller fönster >>Machine learning with state-space models, Gaussian processes and Monte Carlo methods
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Numbers are present everywhere, and when they are collected and recorded we refer to them as data. Machine learning is the science of learning mathematical models from data. Such models, once learned from data, can be used to draw conclusions, understand behavior, predict future evolution, and make decisions. This thesis is mainly concerned with two particular statistical models for this purpose: the state-space model and the Gaussian process model, as well as a combination thereof. To learn these models from data, Monte Carlo methods are used, and in particular sequential Monte Carlo (SMC) or particle filters.

The thesis starts with an introductory background on state-space models, Gaussian processes and Monte Carlo methods. The main contribution lies in seven scientific papers. Several contributions are made on the topic of learning nonlinear state-space models with the use of SMC. An existing SMC method is tailored for learning in state-space models with little or no measurement noise. The SMC-based method particle Gibbs with ancestor sampling (PGAS) is used for learning an approximation of the Gaussian process state-space model. PGAS is also combined with stochastic approximation expectation maximization (EM). This  method, which we refer to as particle stochastic approximation EM, is a general method for learning parameters in nonlinear state-space models. It is later applied to the particular problem of maximum likelihood estimation in jump Markov linear models. An alternative and non-standard approach for how to use SMC to estimate parameters in nonlinear state-space models is also presented.

There are also two contributions not related to learning state-space models. One is how SMC can be used also for learning hyperparameters in Gaussian process regression models. The second is a method for assessing consistency between model and data. By using the model to simulate new data, and compare how similar that data is to the observed one, a general criterion is obtained which follows directly from the model specification. All methods are implemented and illustrated, and several are also applied to various real-world examples.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2018. s. 74
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1709
Nyckelord
Machine learning, State-space models, Gaussian processes
Nationell ämneskategori
Signalbehandling Sannolikhetsteori och statistik
Forskningsämne
Elektroteknik med inriktning mot reglerteknik
Identifikatorer
urn:nbn:se:uu:diva-357611 (URN)978-91-513-0417-5 (ISBN)
Disputation
2018-10-12, ITC 2446, Lägerhyddsvägen 2, Uppsala, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2018-09-18 Skapad: 2018-08-21 Senast uppdaterad: 2018-10-02

Open Access i DiVA

Fulltext saknas i DiVA

Sök vidare i DiVA

Av författaren/redaktören
Svensson, AndreasZachariah, DaveStoica, PeterSchön, Thomas B.
Av organisationen
Avdelningen för systemteknikReglerteknik
Sannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 39 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf