Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Pin-Pointing Concept Descriptions
Högskolan i Borås, Institutionen Handels- och IT-högskolan.
Högskolan i Borås, Institutionen Handels- och IT-högskolan.
2010 (Engelska)Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

In this study, the task of obtaining accurate and comprehensible concept descriptions of a specific set of production instances has been investigated. The suggested method, inspired by rule extraction and transductive learning, uses a highly accurate opaque model, called an oracle, to coach construction of transparent decision list models. The decision list algorithms evaluated are JRip and four different variants of Chipper, a technique specifically developed for concept description. Using 40 real-world data sets from the drug discovery domain, the results show that employing an oracle coach to label the production data resulted in significantly more accurate and smaller models for almost all techniques. Furthermore, augmenting normal training data with production data labeled by the oracle also led to significant increases in predictive performance, but with a slight increase in model size. Of the techniques evaluated, normal Chipper optimizing FOIL’s information gain and allowing conjunctive rules was clearly the best. The overall conclusion is that oracle coaching works very well for concept description.

Ort, förlag, år, upplaga, sidor
IEEE, 2010.
Nyckelord [en]
concept description, decision lists, Machine Learning
Nyckelord [sv]
data mining
Nationell ämneskategori
Data- och informationsvetenskap Systemvetenskap, informationssystem och informatik
Identifikatorer
URN: urn:nbn:se:kth:diva-221608DOI: 10.1109/ICSMC.2010.5641998ISI: 000295015302083Scopus ID: 2-s2.0-78751480736Lokalt ID: 2320/7460OAI: oai:DiVA.org:kth-221608DiVA, id: diva2:1175184
Konferens
2010 IEEE International Conference on Systems Man and Cybernetics (SMC)
Anmärkning

Sponsorship:

This work was supported by the INFUSIS project

(www.his.se/infusis) at the University of Skövde, Sweden, in

partnership with the Swedish Knowledge Foundation under

grant 2008/0502.

QC 20180123

Tillgänglig från: 2018-01-17 Skapad: 2018-01-17 Senast uppdaterad: 2018-01-23Bibliografiskt granskad

Open Access i DiVA

fulltext(168 kB)31 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 168 kBChecksumma SHA-512
ae97e2f8dda9e718873e989b42a79cdd9a67bbdf9c946287b4fece4d3ac18fab4fe08be490e0c67805b4d3016d635e1a75bbd8acadb3d7729076649ff0108f88
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Sök vidare i DiVA

Av författaren/redaktören
Boström, Henrik
Data- och informationsvetenskapSystemvetenskap, informationssystem och informatik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 31 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 48 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf