Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Mining trackman golf data
Department of Information Technology, University of Borås, Sweden.ORCID-id: 0000-0003-0412-6199
Department of Information Technology, University of Borås, Sweden.
Department of Information Technology, University of Borås, Sweden.
School of Informatics, University of Skövde, Sweden.
Visa övriga samt affilieringar
2016 (Engelska)Ingår i: Proceedings - 2015 International Conference on Computational Science and Computational Intelligence, CSCI 2015, IEEE, 2016, s. 380-385Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Recently, innovative technology like Trackman has made it possible to generate data describing golf swings. In this application paper, we analyze Trackman data from 275 golfers using descriptive statistics and machine learning techniques. The overall goal is to find non-trivial and general patterns in the data that can be used to identify and explain what separates skilled golfers from poor. Experimental results show that random forest models, generated from Trackman data, were able to predict the handicap of a golfer, with a performance comparable to human experts. Based on interpretable predictive models, descriptive statistics and correlation analysis, the most distinguishing property of better golfers is their consistency. In addition, the analysis shows that better players have superior control of the club head at impact and generally hit the ball straighter. A very interesting finding is that better players also tend to swing flatter. Finally, an outright comparison between data describing the club head movement and ball flight data, indicates that a majority of golfers do not hit the ball solid enough for the basic golf theory to apply.

Ort, förlag, år, upplaga, sidor
IEEE, 2016. s. 380-385
Nyckelord [en]
Data mining, Golf, Trackman, Artificial intelligence, Computation theory, Decision trees, Learning systems, Correlation analysis, Descriptive statistics, General patterns, Innovative technology, Machine learning techniques, Predictive models, Sports
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:hj:diva-38114DOI: 10.1109/CSCI.2015.77Scopus ID: 2-s2.0-84964425566Lokalt ID: 0;0;miljJAILISBN: 9781467397957 (tryckt)OAI: oai:DiVA.org:hj-38114DiVA, id: diva2:1163938
Konferens
International Conference on Computational Science and Computational Intelligence, CSCI 2015, 7 December 2015 through 9 December 2015
Tillgänglig från: 2017-12-08 Skapad: 2017-12-08 Senast uppdaterad: 2019-08-23Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Sök vidare i DiVA

Av författaren/redaktören
Johansson, UlfRiveiro, Maria
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 67 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf