Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Robotic Grasping of Large Objects for Collaborative Manipulation
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik.
2017 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

In near future, robots are envisioned to work alongside humans in professional anddomestic environments without significant restructuring of workspace. Roboticsystems in such setups must be adept at observation, analysis and rational de-cision making. To coexist in an environment, humans and robots will need tointeract and cooperate for multiple tasks. A fundamental such task is the manip-ulation of large objects in work environments which requires cooperation betweenmultiple manipulating agents for load sharing. Collaborative manipulation hasbeen studied in the literature with the focus on multi-agent planning and controlstrategies. However, for a collaborative manipulation task, grasp planning alsoplays a pivotal role in cooperation and task completion.In this work, a novel approach is proposed for collaborative grasping and manipu-lation of large unknown objects. The manipulation task was defined as a sequenceof poses and expected external wrench acting on the target object. In a two-agentmanipulation task, the proposed approach selects a grasp for the second agentafter observing the grasp location of the first agent. The solution is computed ina way that it minimizes the grasp wrenches by load sharing between both agents.To verify the proposed methodology, an online system for human-robot manipu-lation of unknown objects was developed. The system utilized depth informationfrom a fixed Kinect sensor for perception and decision making for a human-robotcollaborative lift-up. Experiments with multiple objects substantiated that theproposed method results in an optimal load sharing despite limited informationand partial observability.

sted, utgiver, år, opplag, sider
2017. , s. 69
Emneord [en]
Grasp planning, Multi-agent grasping, Collaborative manipulation, Load sharing
HSV kategori
Identifikatorer
URN: urn:nbn:se:ltu:diva-65866OAI: oai:DiVA.org:ltu-65866DiVA, id: diva2:1145271
Fag / kurs
Student thesis, at least 30 credits
Utdanningsprogram
Space Engineering, master's level
Examiner
Tilgjengelig fra: 2017-09-28 Laget: 2017-09-28 Sist oppdatert: 2017-09-28bibliografisk kontrollert

Open Access i DiVA

fulltext(7086 kB)132 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 7086 kBChecksum SHA-512
be6828bd30f55cddb9a664a6a4ac035c07769f7b24b7acf8cf56f4a7a1afca4841a4eccbd4a93c2c1ba00cd23dd9e340b259413e97348ed34df04472fdec53ac
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 132 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 59 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf