Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Dislocation density based material model applied in FE-simulation of metal cutting
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Material- och solidmekanik.
2010 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Simulation based design enables rapid development of products with increased customer value in terms of accessibility, quality, productivity and profitability. However simulation of metal cutting is complex both in terms of numeric and physics. The work piece material undergoes severe deformations. The material model must therefore be able to accurately predict the deformation behavior for a large range of strain, strain rates (>50000 s-1) and temperatures. There exist a large number of different material models. They can be divided into empirical and physically based models. The far most common model used in simulation of metal cutting is the empirical Johnson-Cook plasticity model, JC model. Physically based models are based on the knowledge of the underlying physical phenomena and are expected to have larger domain of validity. Experimental measurements have been carried out in order to calibrate and validate a physical based material model utilizing dislocation density (DD) as internal variable. Split-Hopkinson tests have been performed in order to characterize the material behavior of SANMAC 316L at high strain rates. The DD model has been calibrated in earlier work by Lindgren et al. based on strain rate up to 10 s-1 and temperatures up to 1300 °C with good agreement over the range of calibration. Same good correspondence was not obtained when the model was extrapolated to high strain rate response curves from the dynamic Split-Hopkinson tests. These results indicate that new deformation mechanisms are entering. Repeating the calibration procedure for the empirical JC model shows that it can only describe the material behavior over a much more limited range. A recalibrated DD model, using varying obstacle strength at different temperatures, was used in simulation of machining. It was implemented in an implicit and an explicit finite element code.Simulation of orthogonal cutting has been performed with JC model and DD model using an updated Lagrangian formulation and an implicit time stepping logic. An isotropic hardening formulation was used in this case. The results showed that the cutting forces were slightly better predicted by the DD model. Largest error was 16 % compared to 20 % by the JC model. The predicted chip morphology was also better with the DD model but far from acceptable. Orthogonal cutting was simulated using an updated Lagrangian formulation with an explicit time integration scheme. In this case were two hardening rules tested, isotropic hardening and a mixed isotropic-kinematic hardening. The later showed an improvement regarding the feed force prediction. A deviation of less than 8% could be noticed except for the feed force at a cutting speed of 100 m/min. The time stepping procedure in combination with the mesh refinement seems to be able to capture the chip segmentation quite well without including damage evolution in the material model.Further works will mainly focus on improving the DD-model by introducing relevant physics for high strain rates.

sted, utgiver, år, opplag, sider
Luleå: Luleå tekniska universitet, 2010. , s. 68
Serie
Licentiate thesis / Luleå University of Technology, ISSN 1402-1757
HSV kategori
Forskningsprogram
Materialmekanik
Identifikatorer
URN: urn:nbn:se:ltu:diva-26278Lokal ID: d7abb710-a38f-11df-a707-000ea68e967bISBN: 978-91-7439-126-8 (tryckt)OAI: oai:DiVA.org:ltu-26278DiVA, id: diva2:999440
Presentation
2010-09-23, E246, Luleå tekniska universitet, Luleå, 10:00
Opponent
Tilgjengelig fra: 2016-09-30 Laget: 2016-09-30 Sist oppdatert: 2023-11-29bibliografisk kontrollert

Open Access i DiVA

fulltekst(6176 kB)1757 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 6176 kBChecksum SHA-512
35f2a1aa6d5341c1b77c7a61436fcd2b749f163d0155dee1c856efa54423240eea08c3c9a8ad279f69df07987de2b685dda82103daf4f5e7e8c5b4df255ef8ad
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Wedberg, Dan
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 1757 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 205 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf