Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Solar Heat in Industrial Processes: Integration of Parabolic Trough Solar Collectors Dairy Plants and Pharmaceutical Plants
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
2016 (engelsk)Independent thesis Advanced level (professional degree), 20 poäng / 30 hpOppgave
Abstract [en]

The industry sector accounts for a high share of the final energy consumption, with industries in EU-28accounting for a quarter of the final energy demand. Studies also show that 45 % of the industrial heatdemand in EU-27 is in a temperature range that can be supplied with present day solar collectors. Despitethis large potential, solar heat faces obstacles hindering its growth in the industrial sector. The mostsignificant obstacle is the low insight of the industrial system designs and energy demands. Those arecrucial factors for the feasibility and dimensioning of solar heating systems. Three case studies aretherefore conducted in dairy and pharmaceutical plants in order to review the most promising integrationpoints for parabolic trough solar collectors in terms of annual heat demand, temperature level andintegration effort. Two case studies are performed in dairy plants and one in a pharmaceutical plant, alllocated in Sweden. The analyses comprised reviewing energy mappings, process and instrumentationdiagrams of processes and boiler systems, and hourly energy demand data. Simulations have beencarried out with Polysun for the processes with hourly energy data available.Four integration points have been determined to be high priority solar heat integration points in dairyplants, when considering annual thermal energy demand, temperature levels and integration effort.Those are the low pressure steam line, heating of feedwater, clean in place systems and pasteurizers.Solar heat integration concepts have been presented for all the aforementioned heat sinks andsimulations have been conducted for the low pressure steam line and heating of feedwater. A significantamount of excess heat is produced as a result of fluctuating heat demands and peak solar heat productionhours. Further investigation should be carried out, in order to review the potential of supplying excessheat to other heat sinks. Despite the reviewed potential of the clean in place systems and pasteurizers,lack of the hourly energy demand has hindered further analyses of those systems. It is thereforerecommended to conduct energy measurements before taking further measures.Two integration points have been identified in the pharmaceutical plant, namely autoclaves andmultiple-effect distillers. Solar steam generation concepts have been presented for both processes. Theautoclaves are provided with 4,5 bar steam intermittently, as they work with batches and can have ondutyand off-duty intervals ranging from 3-30 minutes. The multiple-effect distillers are providedwith 7 bar steam, which is of rather high pressure for the solar collectors model on which thesimulations are based. The heat demand of the distillers is more or less constant.It was generally easier to acquire data for the integration points at the supply level. For instance, all heatsinks at the supply level had energy demand data available, contrary to the process level. This inclinesadditional focus on integration to the supply level, if the extent of the feasibility study is to be kept to aminimum.

sted, utgiver, år, opplag, sider
2016. , s. 70
Emneord [en]
Solar heat, SHIP, Solar steam, parabolic trough collectors, solar heat in industrial processes
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-125025OAI: oai:DiVA.org:umu-125025DiVA, id: diva2:957611
Eksternt samarbeid
Absolicon Solar Collector AB
Fag / kurs
Energiteknik
Utdanningsprogram
Master of Science Programme in Energy Engineering
Presentation
2016-08-25, TA:201, Umeå, 08:30 (engelsk)
Veileder
Examiner
Tilgjengelig fra: 2016-09-06 Laget: 2016-09-02 Sist oppdatert: 2016-09-06bibliografisk kontrollert

Open Access i DiVA

Solar Heat in Industrial Processes(5529 kB)348 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 5529 kBChecksum SHA-512
1bf5758abbe776182d32ba1550d3aa01e5a0ed150f9a2cb0f1c3b237c83832f08c750ceea6dfabba68396c459f28d472e4de9a9e40cc9110c89e94aa8a0b5005
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 348 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 1852 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf