Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
User Behavior Analysis and Prediction Methods for Large-scale Video-on- demand System
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi.
2015 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

Video-on-demand (VOD) systems are some of the best-known examples of 'next-generation' Internet applications. With their growing popularity, huge amount of video content imposes a heavy burden on Internet traffic which, in turns, influences the user experience of the systems. Predicting and pre- fetching relevant content before user requests is one of the popular methods used to reduce the start-up delay. In this paper, a typical VOD system is characterized and user's watching behavior is analyzed. Based on the characterization, two pre- fetching approaches based on user behavior are investigated. One is to prediction relevant content based on access history. The other is prediction based on user-clustering. The results clearly indicate the value of pre-fetching approaches for VOD systems and lead to the discussions on future work for further improvement.

sted, utgiver, år, opplag, sider
2015. , s. 51
Serie
IT ; 15071
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-263261OAI: oai:DiVA.org:uu-263261DiVA, id: diva2:857596
Utdanningsprogram
Master Programme in Human-Computer Interaction
Veileder
Examiner
Tilgjengelig fra: 2015-09-29 Laget: 2015-09-29 Sist oppdatert: 2015-09-29bibliografisk kontrollert

Open Access i DiVA

fulltext(1419 kB)539 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1419 kBChecksum SHA-512
28c5ed0778d185e44027476b3673260675fed45f4a7f9a2a56a508f67da8c3a5162704cd37bda3f1ca545cdc2087aa13462c098ff762753bc5ecec4e5a9689e0
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 539 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 1016 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf