Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Some methods for reducing the total consumption and production prediction errors of electricity: Adaptive Linear Regression of Original Predictions and Modeling of Prediction Errors
Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för matematik (MA).
2014 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

Balance between energy consumption and production of electricityis a very important for the electric power system operation and planning. Itprovides a good principle of effective operation, reduces the generation costin a power system and saves money. Two novel approaches to reduce thetotal errors between forecast and real electricity consumption wereproposed. An Adaptive Linear Regression of Original Predictions (ALROP)was constructed to modify the existing predictions by using simple linearregression with estimation by the Ordinary Least Square (OLS) method.The Weighted Least Square (WLS) method was also used as an alternativeto OLS. The Modeling of Prediction Errors (MPE) was constructed in orderto predict errors for the existing predictions by using the Autoregression(AR) and the Autoregressive-Moving-Average (ARMA) models. For thefirst approach it is observed that the last reported value is of mainimportance. An attempt was made to improve the performance and to getbetter parameter estimates. The separation of concerns and the combinationof concerns were suggested in order to extend the constructed approachesand raise the efficacy of them. Both methods were tested on data for thefourth region of Sweden (“elområde 4”) provided by Bixia. The obtainedresults indicate that all suggested approaches reduce the total percentageerrors of prediction consumption approximately by one half. Resultsindicate that use of the ARMA model slightly better reduces the total errorsthan the other suggested approaches. The most effective way to reduce thetotal consumption prediction errors seems to be obtained by reducing thetotal errors for each subregion.

sted, utgiver, år, opplag, sider
2014. , s. 65
Emneord [en]
Adaptive Linear Regression of Original Predictions, Modeling of Prediction Errors, Total Consumption Prediction Errors of Electricity, ARMA, OLS, WLS, TECP, TECC, TPE, MAPE, MPE
HSV kategori
Identifikatorer
URN: urn:nbn:se:lnu:diva-34398OAI: oai:DiVA.org:lnu-34398DiVA, id: diva2:719691
Utdanningsprogram
Mathematics and Modelling, Master Programme, 120 credits
Presentation
2014-05-14, Växjö, 11:15 (engelsk)
Veileder
Examiner
Tilgjengelig fra: 2014-05-27 Laget: 2014-05-26 Sist oppdatert: 2014-05-27bibliografisk kontrollert

Open Access i DiVA

Some methods for reducing the total consumption and production prediction errors of electricity(1521 kB)213 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1521 kBChecksum SHA-512
c3a140c7b727f952dd917edeff42f551f195bafa90ab736ea47421490f78444ebdac0233996c9e32f2109f021e4c459f4ff5388683bf9278911f077b6cf3c912
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 213 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 397 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf