Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Direct hand pose estimation for immersive gestural interaction
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik. (Digital Media Lab)
KTH Royal Institute of Technology, Department of Media Technology and Interaction Design.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik. (Digital Media Lab)
Vise andre og tillknytning
2015 (engelsk)Inngår i: Pattern Recognition Letters, ISSN 0167-8655, E-ISSN 1872-7344, Vol. 66, s. 91-99Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This paper presents a novel approach for performing intuitive gesture based interaction using depth data acquired by Kinect. The main challenge to enable immersive gestural interaction is dynamic gesture recognition. This problem can be formulated as a combination of two tasks; gesture recognition and gesture pose estimation. Incorporation of fast and robust pose estimation method would lessen the burden to a great extent. In this paper we propose a direct method for real-time hand pose estimation. Based on the range images, a new version of optical flow constraint equation is derived, which can be utilized to directly estimate 3D hand motion without any need of imposing other constraints. Extensive experiments illustrate that the proposed approach performs properly in real-time with high accuracy. As a proof of concept, we demonstrate the system performance in 3D object manipulation On two different setups; desktop computing, and mobile platform. This reveals the system capability to accommodate different interaction procedures. In addition, a user study is conducted to evaluate learnability, user experience and interaction quality in 3D gestural interaction in comparison to 2D touchscreen interaction.

sted, utgiver, år, opplag, sider
2015. Vol. 66, s. 91-99
Emneord [en]
Immersive gestural interaction, Dynamic gesture recognition, Hand pose estimation
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-86748DOI: 10.1016/j.patrec.2015.03.013ISI: 000362271100011OAI: oai:DiVA.org:umu-86748DiVA, id: diva2:703476
Tilgjengelig fra: 2014-03-06 Laget: 2014-03-06 Sist oppdatert: 2018-06-08bibliografisk kontrollert
Inngår i avhandling
1. Bring Your Body into Action: Body Gesture Detection, Tracking, and Analysis for Natural Interaction
Åpne denne publikasjonen i ny fane eller vindu >>Bring Your Body into Action: Body Gesture Detection, Tracking, and Analysis for Natural Interaction
2014 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Due to the large influx of computers in our daily lives, human-computer interaction has become crucially important. For a long time, focusing on what users need has been critical for designing interaction methods. However, new perspective tends to extend this attitude to encompass how human desires, interests, and ambitions can be met and supported. This implies that the way we interact with computers should be revisited. Centralizing human values rather than user needs is of the utmost importance for providing new interaction techniques. These values drive our decisions and actions, and are essential to what makes us human. This motivated us to introduce new interaction methods that will support human values, particularly human well-being.

The aim of this thesis is to design new interaction methods that will empower human to have a healthy, intuitive, and pleasurable interaction with tomorrow’s digital world. In order to achieve this aim, this research is concerned with developing theories and techniques for exploring interaction methods beyond keyboard and mouse, utilizing human body. Therefore, this thesis addresses a very fundamental problem, human motion analysis.

Technical contributions of this thesis introduce computer vision-based, marker-less systems to estimate and analyze body motion. The main focus of this research work is on head and hand motion analysis due to the fact that they are the most frequently used body parts for interacting with computers. This thesis gives an insight into the technical challenges and provides new perspectives and robust techniques for solving the problem.

sted, utgiver, år, opplag, sider
Umeå: Umeå Universitet, 2014. s. 70
Serie
Digital Media Lab, ISSN 1652-6295 ; 19
Emneord
Human Well-Being, Bodily Interaction, Natural Interaction, Human Motion Analysis, Active Motion Estimation, Direct Motion Estimation, Head Pose Estimation, Hand Pose Estimation.
HSV kategori
Forskningsprogram
signalbehandling; datoriserad bildanalys
Identifikatorer
urn:nbn:se:umu:diva-88508 (URN)978-91-7601-067-9 (ISBN)
Disputas
2014-06-04, Naturvetarhuset, N420, Umeå universitet, Umeå, 13:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2014-05-14 Laget: 2014-05-08 Sist oppdatert: 2018-06-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Abedan Kondori, FaridKouma, Jean-PaulLiu, LiLi, Haibo
Av organisasjonen
I samme tidsskrift
Pattern Recognition Letters

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 1499 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf