Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The effect of nonstationarity on models inferred from neural data
Stockholms universitet, Naturvetenskapliga fakulteten, Matematiska institutionen.
Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Kavli Institute for Systems Neuroscience, NTNU, Norway.
Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Niels Bohr Institute, Denmark.
2013 (engelsk)Inngår i: Journal of Statistical Mechanics: Theory and Experiment, ISSN 1742-5468, E-ISSN 1742-5468, artikkel-id P03005Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Neurons subject to a common nonstationary input may exhibit a correlated firing behavior. Correlations in the statistics of neural spike trains also arise as the effect of interaction between neurons. Here we show that these two situations can be distinguished with machine learning techniques, provided that the data are rich enough. In order to do this, we study the problem of inferring a kinetic Ising model, stationary or nonstationary, from the available data. We apply the inference procedure to two data sets: one from salamander retinal ganglion cells and the other from a realistic computational cortical network model. We show that many aspects of the concerted activity of the salamander retinal neurons can be traced simply to the external input. A model of non-interacting neurons subject to a nonstationary external field outperforms a model with stationary input with couplings between neurons, even accounting for the differences in the number of model parameters. When couplings are added to the nonstationary model, for the retinal data, little is gained: the inferred couplings are generally not significant. Likewise, the distribution of the sizes of sets of neurons that spike simultaneously and the frequency of spike patterns as a function of their rank (Zipf plots) are well explained by an independent-neuron model with time-dependent external input, and adding connections to such a model does not offer significant improvement. For the cortical model data, robust couplings, well correlated with the real connections, can be inferred using the nonstationary model. Adding connections to this model slightly improves the agreement with the data for the probability of synchronous spikes but hardly affects the Zipf plot.

sted, utgiver, år, opplag, sider
2013. artikkel-id P03005
Emneord [en]
computational neuroscience, statistical inference
HSV kategori
Identifikatorer
URN: urn:nbn:se:su:diva-89543DOI: 10.1088/1742-5468/2013/03/P03005ISI: 000316056900005OAI: oai:DiVA.org:su-89543DiVA, id: diva2:619175
Merknad

AuthorCount:4;

Tilgjengelig fra: 2013-05-02 Laget: 2013-04-29 Sist oppdatert: 2018-09-04bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Tyrcha, JoannaRoudi, YasserHertz, John
Av organisasjonen
I samme tidsskrift
Journal of Statistical Mechanics: Theory and Experiment

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 70 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf