Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Photocatalytic activity of low temperature oxidized Ti-6Al-4V
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.ORCID-id: 0000-0001-9529-650X
2012 (engelsk)Inngår i: Journal of materials science. Materials in medicine, ISSN 0957-4530, E-ISSN 1573-4838, Vol. 23, nr 5, s. 1173-1180Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Numerous advanced surface modification techniques exist to improve bone integration and antibacterial properties of titanium based implants and prostheses. A simple and straightforward method of obtaining uniform and controlled TiO2 coatings of devices with complex shapes is H2O2-oxidation and hot water aging. Based on the photoactivated bactericidal properties of TiO2, this study was aimed at optimizing the treatment to achieve high photocatalytic activity. Ti-6Al-4V samples were H2O2-oxidized and hot water aged for up to 24 and 72 h, respectively. Degradation measurements of rhodamine B during UV-A illumination of samples showed a near linear relationship between photocatalytic activity and total treatment time, and a nanoporous coating was observed by scanning electron microscopy. Grazing incidence X-ray diffraction showed a gradual decrease in crystallinity of the surface layer, suggesting that the increase in surface area rather than anatase formation was responsible for the increase in photocatalytic activity.

sted, utgiver, år, opplag, sider
2012. Vol. 23, nr 5, s. 1173-1180
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot nanoteknologi och funktionella material; Teknisk fysik med inriktning mot materialvetenskap
Identifikatorer
URN: urn:nbn:se:uu:diva-174919DOI: 10.1007/s10856-012-4602-xISI: 000303357600005OAI: oai:DiVA.org:uu-174919DiVA, id: diva2:529506
Tilgjengelig fra: 2012-05-30 Laget: 2012-05-30 Sist oppdatert: 2018-02-08bibliografisk kontrollert
Inngår i avhandling
1. Antibacterial Strategies for Titanium Biomaterials
Åpne denne publikasjonen i ny fane eller vindu >>Antibacterial Strategies for Titanium Biomaterials
2015 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Titanium and titanium based alloys are widely used in dentistry and orthopedics to replace hard tissue and to mend broken bones. It has become a material of choice due to its low density, high strength, good biocompatibility and its capacity to integrate closely with the bone. Today, modern materials and surgical techniques can enable patients to live longer, and aid in maintaining or regaining mobility for a more fulfilling life. There are, however, instances where implants fail, and one of the primary causes for implant failure is infection.

This thesis deals with two possible ways of reducing or eliminating implant associated infections; TiO2 photocatalysis, where a surface can become antibacterial upon irradiation with UV light; and incorporation of silver, where a subsequent release of silver metal ions result in an antibacterial effect.

For the TiO2 photocatalysis strategy, a simple and cost effective chemical oxidation technique, using hydrogen peroxide (H2O2) and water, was used to create an active TiO2 surface on titanium substrates. This surface was shown to effectively degrade an organic model substance (rhodamine B) by generating reactive oxygen species (ROS) under UV illumination. However, it was shown that Ti-peroxy radical species remaining in the surface after the H2O2-oxidation process, rather than generation of ROS from a heterogeneous photocatalytic process, was responsible for the effect. This discovery was further exploited in a TiO2/H2O2/UV system, which demonstrated synergy effects in both rhodamine B degradation tests and in antibacterial assays.

For the silver ion release strategy, a combinatorial materials science approach was employed. Binary Ag-Ti oxide gradients were co-deposited in a reactive (O2) environment using a custom built physical vapor deposition system, and evaluated for antibacterial properties. The approach enabled synthesis and composition-structure-property evaluation unlikely to have been achieved by traditional means, and the gradient coatings demonstrated antibacterial properties against both S. aureus and S. epidermidis according to silver ion release. The release was shown to depend more on structural features, such as surface area, crystallinity and oxidation state, than on composition.

Ag-Ti oxide gradients were also evaluated under UV illumination, as Ag deposits on crystalline TiO2 can enhance photocatalytic properties. In this work, however, the TiO2 was amorphous and UV illumination caused a slight reduction in the antibacterial effect of silver ions. This was attributed to a UV-induced SOS response in the S. epidermidis bacteria.

The results of this thesis demonstrate that both TiO2 photocatalysis, or UV induced activation of Ti-peroxy radical species, as well as incorporation of silver are viable antibacterial strategies for titanium biomaterials. However, their clinical applications are still pending risk-benefit analyses of potential adverse host tissue responses. 

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2015. s. 72
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1250
Emneord
Titanium, silver, biomaterial, antibacterial, photocatalysis, hydrogen peroxide, reactive oxygen species, combinatorial materials science
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot materialvetenskap
Identifikatorer
urn:nbn:se:uu:diva-249181 (URN)978-91-554-9241-0 (ISBN)
Disputas
2015-06-05, Siegbahn Hall, The Ångström Laboratory, Lägerhyddsvägen 1, Uppsala, 09:15 (engelsk)
Opponent
Veileder
Forskningsfinansiär
Swedish Foundation for Strategic Research
Tilgjengelig fra: 2015-05-12 Laget: 2015-04-12 Sist oppdatert: 2015-07-07

Open Access i DiVA

Author version(8597 kB)768 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 8597 kBChecksum SHA-512
8d0ee6202a271259d5dbecffad34ae7595a5f8a104d5438d0e97e6ee0c71e322d8b77b43cecdb104938c54774de7da7b72cd40b309064da83e984246b5afaca1
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Unosson, ErikPersson, CeciliaWelch, KenEngqvist, Håkan
Av organisasjonen
I samme tidsskrift
Journal of materials science. Materials in medicine

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 768 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 884 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf